

D3.1 Secure Evolving Software Systems: a State
of the Art Survey

Federica Paci, Fabio Massacci, Elisa Chiarani (UNITN) Michael
Hafner (UIB), Zoltan Micskei (BME), Armstrong Nhlabatsi, Bashar
Nuseibeh, Yijun Yu (OU)

Document information

Document Number D3.1

Document Title Secure Evolving Software Systems: a State of the
Art Survey

Version 4.0

Status Final

Work Package WP 3

Deliverable Type Report

Contractual Date of Delivery 31 July 2009

Actual Date of Delivery 31 July 2009

Responsible Unit UNITN

Contributors UNITN, BME, UIB, OU

Keyword List

Software Evolution, Security Requirements
Engineering, Requirements evolution, Policies
Evolution
. Dissemination level PU

State-of-the-Art Report | version 4.0 | page 2 / 10

Document change record

Version Date Status Author (Unit) Description

0.1 26 March 2009 Draft B. Nuseibeh, Y. Yu (OU) Outline

0.2 30 April 2009 Working A. Nhlabatsi (OU) SoA in Appendix B

0.3 17 June 2009 Working A. Nhlabatsi (OU) New version of SoA in

Appendix B

0.4 23 June 2009 Working M. Hafner (UIB) and Z.

Micskei (BME)

Contribution to

Appendix B and

revision

1.0 24 June 2009 Draft A. Nhlabatsi (OU) SoA Report in

Appendix B

2.0 16 July 2009 Draft F. Paci (UNITN) Draft of Introduction

and Appendix C

2.1 27 July 2009 Working A. Nhlabatsi (OU) SoA Report new

version in Appendix B

3.0 31 July 2009 Draft F. Massacci (UNITN) Revision of

Introduction

4.0 31 July 2009 Final E. Chiarani, F. Paci

(UNITN)

Finalised version for

deliverable

State-of-the-Art Report | version 4.0 | page 3 / 10

Executive summary

Long-lived software systems often undergo evolution over an extended period of time.
Evolution of these systems is inevitable as they need to continue to satisfy changing
business needs, new regulations and standards, and the introduction of novel
technologies. Once the system is put in operation, new requirements emerge and
existing requirements change. Parts of the software may have to be modified to correct
errors that are found in operation, to adapt it for a new platform and to improve its
performance or other non-functional properties.

Software systems inevitably have to change if they are to remain useful, but the
change may undermine the security of the systems. It is thus important to design
software systems that are evolvable and secure.

This report reviews the current approaches to software evolution, security requirements
engineering, requirements evolution, evolution in access control, and presents new
research strands in software evolution.

State-of-the-Art Report | version 4.0 | page 4 / 10

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 3

INDEX 4

1. INTRODUCTION 5

REFERENCES 7

APPENDIX A - REQUIREMENT EVOLUTION AND WHAT (RESEAR CH) TO
DO ABOUT IT 8

APPENDIX B - SECURITY REQUIREMENTS ENGINEERING FOR
EVOLVING SOFTWARE SYSTEMS: A SURVEY 9

APPENDIX C - EVOLUTION IN ACCESS CONTROL SYSTEMS 10

State-of-the-Art Report | version 4.0 | page 5 / 10

1 Introduction

Software systems are undergoing continuing change and rapid revolution to respond to
the changes in the environment, changes in user needs, developing concepts and
advancing technologies [1]. Once software is put in operation, new requirements
emerge and existing requirements change. Parts of the software may have to be
modified to correct errors that are found in operation, to adapt it for a new platform and
to improve its performance or other non-functional properties.

Software evolution, thus, is driven by changes that can affect the different artifacts
produced during the software engineering process. The traditional WRSPM model [2]
assumes five main artifacts:

• domain knowledge (W) that provides presumed environment facts;

• requirements (R) that indicate what the customer needs from the system,
described in terms of its effect on the environment;

• specifications (S) that provide enough information for a developer to build a
system that satisfies the requirements;

• a program (P) that implements the specification using the programming platform;
and a programming platform (M) that provides the basis for programming a
system that satisfies the requirements and specifications.

Changes in such model are based on the traditional waterfall model of software
engineering [3] where a change in one of the artefact from an earlier stage are seen a
cause of change in the artefact from later stages1:

Changes of the domain knowledge may result in changes to the requirements, the
specification and the program associated with a system. Examples of domain
knowledge changes include changes of the business processes associated with the
system, upgrades to the hardware or operating system, changes in the platform, and
changes in privacy and security laws and regulations.

Changes of requirements evolve because organizational, business and user needs
change, because the operating environment change or because of errors and
inconsistencies in the program. Changes of requirements often result in changes in
system specification and program. For example, when requirements change also
security policies change [4], and viceversa in order to preserve the security of the
system.

Changes of the specifications are determined by changes in the requirements. They
include changes to the software architecture, e.g the addition, the removal or the
modification of system functionalities, the update or the modification of the security
policies protecting the system.

Changes of the program are changes to the source code that may be the result of
changes in the requirements and in the specification of the system.

1 The changes to the programming platform can also be considered as changes of the domain knowledge.

State-of-the-Art Report | version 4.0 | page 6 / 10

Current research in software evolution has investigated evolution as change in
specification and in the program, but evolution as change in requirements has received
little attention from the research community. Another important aspect that has not
been considered by the research community is how to support systems evolution while
preserving the security of the systems. In fact, if on one side, software systems
inevitably have to evolve to remain useful, on the other side, the change may
undermine their security.

A further observation is that such model of waterfall change is also obsolete from the
point of view of the classification of changes. We just make two examples here. At first
we should consider not just the program and the programming platform as the “final”
artefact but rather the full socio-technical system that is implemented [8]. A second
issue is that changes might happen at different levels independently from each other
(unless everything is considered a requirement). Changes in the program’s APIs might
be due to changes in the threat model (countering new forms of buffer overflows) or
due to upgrade of the operating systems. The reader will not find a new model in this
report. This is the task of the conceptual model of SecureChange.

The report is organized as follows.

Appendix A is a background document, realized before the start of the project, that
summarize the state-of-the-art about general requirements evolution, and discusses
some of the research issues related to this topic. The main research strands identified
are related to the identification of the causes dictating the change of requirements, the
infrastructure for requirements evolution, and the design process. One of the major
causes for requirements to change is the introduction of new laws and regulations for
privacy, security, governance and safety. Thus, research efforts should be devoted to
the developing of tools and techniques for systematically extracting requirements from
laws and regulations in order to prove requirements compliance to such laws and
regulations. An infrastructure for requirements evolution should include tools for
version control, configuration management and visualization that have to
accommodate the kinds of models used to represent requirements. Designs should be
characterized by a high variability and modularity to be suited for evolution. High
variability means supporting alternative designs for a given functionality. Highly
modularity means that a system can have some of its components change with low
impact on other components.

Appendix B is a focussed review on the notion of security requirements engineering.
The appendix discusses open research issues and challenges that may need to be
addressed in order to achieve the goal of security engineering for evolving software
systems. One of the main challenges has been identified is the need for an approach
for reasoning about both software evolution and security engineering. A cross
fertilisation of approaches to managing software evolution with security requirements
engineering is proposed as one way to address the problem of violating security
requirements as result of evolution. Other challenges identified are designing change
tolerant software systems, non-monotonicity of evolving software systems and secure
evolution for adaptive software.

Finally, Appendix C analyzes which are the causes of evolution in access control
systems and provides an overview of the approaches to manage their evolution.

State-of-the-Art Report | version 4.0 | page 7 / 10

References

[1] Lehman, M.M. and J.F. Ramil, Software evolution: background, theory, practice.
Information Processing Letters, 2003. 88(1-2): p. 33-44.

[2] Gunter, C. A., Gunter, E. L., Jackson, M., and Zave, P. (2000). A reference model for
requirements and specifications. IEEE Software, p 37-43.

[3] Sommerville I. Software Engineering 8th Edition. Pearson Education Limited.

[4] HE, Q., Anton, A. Deriving Access Control Policies from Requirements Specifications and
Database Designs. Technical Report #TR-2004-24, September 2005.

[5] Zave, P. and M. Jackson, Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology, 1997. 6(1): p. 1-30.

[6] Nhlabatsi, A., B. Nuseibeh, and Y. Yu, Security Requirements Engineering for Evolving
Software Systems: a Survey. 2009, The Open University: Milton Keynes. p. 27.

[7] Earst, N., Mylopolous, J., Wang, Y. Requirements Evolution and What (Research) to Do
about It. Design Requirements Engineering: A Ten-Year Prospective. Springer, 2009.

State-of-the-Art Report | version 4.0 | page 8 / 10

APPENDIX A – Requirements Evolution and
What (Research) to Do about It

Requirements Evolution and What (Research)
to Do about It

Neil A. Ernst1, John Mylopoulos1,2, and Yiqiao Wang1

1 University of Toronto, Dept. of Computer Science, Toronto, Canada
{nernst,jm,yw}@cs.toronto.edu

2 University of Trento, Dept. of Information Engineering and Computer Science,
Trento, Italy

jm@disi.unitn.it

Abstract. Requirements evolution is a research problem that has re-
ceived little attention hitherto, but deserves much more. For systems to
survive in a volatile world, where business needs, government regulations
and computing platforms keep changing, software systems must evolve
too in order to survive. We discuss the state-of-the-art for research on
the topic, and predict some of the research problems that will need to be
addressed in the next decade. We conclude with a concrete proposal for
a run-time monitoring framework based on (requirements) goal models.

Keywords: Requirements, evolution, monitoring, satisfiability.

1 Introduction

It has been known for decades that changing requirements constitute one of the
greatest risks for large software development projects [1]. That risk manifests itself
routinely in statistics on failure and under-performance for such projects. “Chang-
ing requirements”usually refers to thephenomenonwhere stakeholderskeep chang-
ing their minds on what they want out of a project, and where their priorities lie.
Little attention has been paid to post-deployment requirements changes1, occur-
ring after a system is in operation, as a result of changing technologies, operational
environments, and/or business needs. In this chapter we focus on this class of re-
quirements changes and we refer to them as requirements evolution.

Evolution is a fact of life. Environments and the species that operate within
them – living, artificial, or virtual – evolve. Evolution has been credited with the
most advanced biological species that has lived on earth. The ability to evolve has
also come to be treated as a prerequisite for the survival of a species. And, yet, evo-
lution of the software systems species has only been studied at the level of code and
design, but not at the level of requirements. In particular, there has been consid-
erable research on software evolution, focusing on code reengineering and migra-
tion, architectural evolution, software refactoring, data migration and integration.
1 . . . with the notable exception of research on traceability mechanisms. Of course, trace-

ability is useful for evolving requirements, but doesn’t actually solve the problem.

K. Lyytinen et al. (Eds.): Design Requirements Workshop, LNBIP 14, pp. 186–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Requirements Evolution and What (Research) to Do about It 187

However, the problem of post-deployment evolution of requirements (as opposed
to architecture, design and/or code) hasn’t made it yet into research agendas (see,
for example, the topics that define the scope of a recently held workshop on “Dy-
namic Software Evolution”, http://se.inf.ethz.ch/ moriol/DSE/About.html).

There are important reasons why requirements evolution is about to become a
focal point for research activity in Software Engineering. The change from local,
isolated communities to the global village isn’t happening only for commerce,
news and the environment. It is also happening for software systems. In the past,
operational environments for software systems were stable, changes were local,
and evolution had only local impact. Today, the operational environment of a
growing number of software systems is global, open, partly unknown and always
unpredictable. In this context, software systems have to evolve in order to cope
(“survive” is the technical term for other species). Some of this evolution will
be at the code level, and some at the architectural level. The most important
evolution, however, will have to take place at the requirements level, to ensure
that a system continues to meet the needs of its stakeholders and the constraints
– economic, legal and otherwise – of its operational environment.

An obvious implication of the rise to prominence of requirements evolution is
that the research to be conducted will have to be inter-disciplinary. Researchers
from Management, Organizational Theory, Sociology and Law will have to be
part of the community that studies root causes for change and how to derive
from them new requirements. Evolution mechanisms and theories that account
for them have been developed in Biology, Engineering, Organizational Theory
and Artificial Intelligence. Some of these may serve as fruitful starting points for
the research to be done.

A precondition for any comprehensive solution to the problem of evolving
requirements is that design-time requirements are properly captured and main-
tained during a system’s lifecycle, much like code. Accordingly, we (optimisti-
cally) predict that the days of lip service to requirements are coming to an end, as
Software Engineering Research and Practice opt for lasting technical solutions in
a volatile world. Growing interest in topics such as autonomic software, semantic
web services, multi-agent and/or adaptive software, peer-to-peer computing (. . .
and more!) give some evidence that this optimism is not totally unwarranted.

The main objective of this chapter is to review the past (section 2) and suggest
a research agenda on requirements evolution for the future (section 3). After a gen-
eral discussion of topics and issues,we focus on one itemof this agenda –monitoring
requirements – to make the discussion more concrete. The remainder of the paper
presents some of our on-goingworkon the problem ofmonitoring requirements and
generating diagnoses. Technical details of this work have been presented in [2].

2 The Past

In the area of software evolution, the work of M. Lehman [3] stands out, with
a proposal backed by empirical data for laws of program evolution. These laws
offer a coarse grain characterization of types of software and the nature of its

188 N.A. Ernst, J. Mylopoulos, and Y. Wang

evolution over its lifetime. Lehman’s work on program evolution actually started
with a study of the development of OS/360, IBM’s flagship operating system in
the late 60s. The study found that the amount of debugging decreased over time
and concluded that the system would have a troubled lifetime, which it did. A few
years later, Fred Brooks (academic, but also former OS/360 project manager)
excoriated the IBM approach to software management in his book “The Mythical
Man Month” [4]. Using Lehman’s observations as a foundation he formulated his
own “Brooks’ Law”: adding manpower to a late software project makes it later;
all software programs are ultimately doomed to succumb to their own internal
inertia. Fernandez-Ramil et al. [5] offers a comprehensive collection of recent
research on the topic of software evolution.

As noted in the introduction, the focus of much of the research on software
evolution has been on the code. Few software systems come with explicit links to
requirements models. Pragmatically, it is simpler to understand system evolution
by examining code artifacts – files, classes, and possibly UML diagrams. For
example, Gı̂rba and Ducasse [6] present a metamodel for understanding software
evolution by analysing artifact history. Their discussion pays little attention to
the problem domain, likely because there is no clear way of reconstructing it.
Similarly, Xing and Stroulia [7] use class properties to recapitulate a series of
UML class diagrams to detect class co-evolution. Again, this study pays no
attention to the causes of these changes, some of which relate to requirements.

We begin this section with a discussion of work that first identified the is-
sue of requirements evolution, summarizing various attempts to characterize the
problem using frameworks and taxonomies. We conclude with a look at cur-
rent approaches to managing evolving requirements, including module selection,
management, and traceability.

2.1 Early Work

When discussing the drivers behind an evolving model, and ways of managing
that evolution, there are many definitions and terminologies in use. Various re-
searchers have attempted to categorize the phenomena of evolving systems, the
majority of whom come from the software maintenance community. The impor-
tance of requirements models throughout the software lifecycle has long been rec-
ognized. Basili and Weiss [8] reported that the majority of changes to a system
requirements document were trivial, requiring less than three hours to implement.
However, a few errors required days or weeks to resolve. Similarly, Basili and Per-
ricone [9] report that of errors detected in a system during implementation, 12%
were due to poor requirements (and 36% due to poor specifications). Rather than
present an overarching temporal list, we categorize pertinent research into cate-
gories and draw distinctions between them. The majority of these papers present
viable approaches to understanding the concepts involved. Where there are dif-
ferences, they are typically the result of different perspectives.

Harker et al. [10] classifies requirements into:

1. enduring – core to the business;
2. mutable – a product of external pressures;

Requirements Evolution and What (Research) to Do about It 189

3. emergent – surfaced during thorough elicitation;
4. consequential – identified after product implementation;
5. adaptive – requirements that support system agility; and finally,
6. migration requirements – those which help during the changeover.

Where Rajlich and Bennett [11] and Lientz and Swanson [12] (see below) are dis-
cussing the process (actions) of managing these changing requirements, Harker
et al. are focusing on the structure of those requirements. There are many terms
one might apply to change and evolution in software. Rowe et al. [13] define
evolvability as “a system’s ability to accept change”, with the addition of the
constraints that it be a least-cost change, as well as one preserving the integrity
of the architecture. It isn’t made clear why the preservation of architectural form
is important – perhaps for backwards compatibility.

They mention four properties of evolvability: generality, adaptability, scal-
ability, and extensibility. There is a two-way relationship among these. From
generality to extensibility there is an increasing amount of change required for a
given requirement; from extensibility to generality there is a increasing amount
of up-front cost. In other words, to build an extensible system is initially cheap,
but costly when the change needs to be made, since radical extensions to the
architecture are required. This dimension characterizes a given system in terms
of an architectural state space – similar to the ‘space of action possibilities’
described in Vicente [14, p. 123].

Another state space model is covered in Favre [15], which presents a ‘3D’
model of evolution. The three dimensions are model abstraction (model, meta-
model, etc.), engineering/implementation, and representation. Each dimension
has an associated series of stages, and Favre uses the intersection of these dimen-
sions to map a particular product in a software space. For example, engineering
stages consist of requirements, architecture, design and implementation – the
traditional phases of software development. If we talk about a system at the
meta-level of requirements, with an implicit representation, an example might
be a conceptual metamodel such as the UML metamodel.

Favre suggests the importance of combining these orthogonal dimensions is
for understanding how the various dimensions co-evolve. For example, it is im-
portant to consider whether the specification is co-evolving with the implemen-
tation, whether the modeling language is keeping pace with the technology, etc.
As Favre concludes, it is important to remember that ‘languages, tools, and
programs evolve in parallel’.

To understand the motivations behind making changes to a system, a seminal
work in the field of software maintenance is Swanson [16] (see also Lientz and
Swanson [12]). They categorize software evolution into adaptive (environmental
changes), corrective and perfective (new internal requirements) maintenance.
Later work has added the notion of preventive maintenance. The context in
which this work was done differs greatly from today; however, this division can
be a useful way of understanding the nature of the changes in the environment
which provoke reaction in the system.

190 N.A. Ernst, J. Mylopoulos, and Y. Wang

Rajlich and Bennett [11] propose a different model, reflecting their belief that
the post-delivery lifecycle is more complex than the term ‘maintenance’ reflects.
They divide the post-delivery phase into four stages: evolution (major updates),
servicing (corrective maintenance), phaseout, and closedown. Such a model re-
flects activities undertaken by companies like Microsoft and its Windows family
of products. A requirements model is involved at the evolution (and possibly
the servicing) stage. This model may be at odds with more agile development
techniques, although there is a lack of research into the implications of agile
techniques for software maintenance (although see Svensson and Host [17] for a
preliminary assessment).

The process of managing change is also the subject of Nelson et al. [18]. They
talk about flexibility in the context of business processes. Successful organiza-
tions (and their systems) exhibit adaptability, or the willingness to ‘engage the
unfamiliar’. Flexibility is the ability of such a system to handle change pressures
and adapt. This is characterized as either structural or procedural. There are sev-
eral determinants of each. Structural flexibility relies on modularity, or design
separation; change acceptance, the degree to which the technology has built-
in abilities to adapt; and consistency, the ability to make changes painlessly.
Procedural flexibility is determined by the rate of response, system expertise
(up-to-date knowledge), and coordinated action. Together, these characteristics
define what it means for a system to adapt to a given change event. High levels
of the preceding characteristics imply a high affinity to accommodate change.

Many proposed requirements engineering frameworks ignore change accep-
tance, relying on users to understand the nature of the change, and manually
incorporate it. Buckley et al. [19] offer a taxonomy that describes the HOW,
WHEN, WHERE and WHAT questions of software evolution (but not WHY
or WHO). They suggest that such a taxonomy will help in understanding the
mechanisms of the change, with a view to designing strategies for accommo-
dating these processes. They categorize these questions into four dimensions of
software change: change support, temporal change properties, object of change,
and system properties. They analyze three tools which have seen evolution along
the lines of the taxonomy. Requirements change is not specifically mentioned,
but can be thought of as driving temporal change properties – e.g., a change in
the environment will drive a change in the software.

In an attempt to bring together various software maintenance taxonomies,
Chapin et al. [20] propose a high-level taxonomy for understanding the types of
activities that occur in this area. The ontology is based on an impact model,
examining evolution in the context of change to business processes and change
to software (presumably this can be extended to refer to software-based system).
They classify change events into a cascading, 4-part hierarchy of 12 categories,
reflecting what they say is the wide diversity of concepts that exist in research
and practice. Extending from perfective, adaptive, and corrective, they include
four categories: support interface, documentation, software properties, and busi-
ness rules.

Requirements Evolution and What (Research) to Do about It 191

For example, within business rules they define three changes: reductive, cor-
rective, and enhancive. Their business rules category has the closest relationship
to the concept of requirements. Changes in this category also have the high-
est impact on both software and business processes. According to this defini-
tion then, requirements changes will have the greatest cost for an organization.
This idea certainly fits with the research findings suggesting that fixing require-
ments problems consistitute by far the largest cost in system maintenance (e.g.,
see Standish reports, although these are of uncertain research value). However,
Chapin et al. do not explicitly discuss requirements. For example, they men-
tion ‘change requests’, user-driven needs, as drivers, but make no reference to
updated requirements. They also distinguish between maintenance – changes in
the first 3 categories – and evolution, which (in their definition) primarily affects
business rules. This is certainly the sense this chapter refers to.

Many of the prior papers mention requirements only because an implicit
change in requirements has driven some corresponding change in the imple-
mented software system. However, our research is concerned with the nature
of these requirements changes. This was also the subject of research by Mas-
simo Felici. In [21], he refers to requirements evolving in the early phases of
a system, with perfective maintenance occurring toward the end of a system’s
lifespan. However, this view is at odds with the current view of requirements as
something that exists throughout the project lifecycle.

In [22], the analysis begins with the observation that requirements frameworks
generally do a poor job handling evolving requirements. The PROTEUS classi-
cation of requirements evolution (that of Harker et al.) is presented as a way to
understand how requirements evolve. A requirement is either stable or chang-
ing. If the latter, it can be one of five subtypes: mutable, due to environmental
factors; emergent, due to stakeholder engagement; consequential, resulting from
the interaction of system and environment; adaptive, due to task variation; and
migration, arising from planned business changes. This taxonomy of causes of
requirements evolution is fairly concise yet comprehensive. Felici also discusses
the similar causal taxonomy of Sommerville and Sawyer [23], which they term
‘volatile requirements’. Sommerville and Sawyer use the categories of mutable,
emergent, consequential, and compatibility requirements. Similarly, [24] presents
the EVE framework for characterizing change, but without providing specifics
on the problem beyond a metamodel.

2.2 Requirements Management

Requirements management studies how best to control the impacts of change
on requirements. Properly managing change events — such as new stakeholder
requirements — can be essential to reducing the amount of model evolution that
occurs. A key research contribution in this area is a better understanding of how
exactly these external pressures manifest themselves.

For example, Stark et al. [25] discuss change to requirements during the sys-
tem release process. A release can be a minor version of an existing product, so
this is a legitimate use of the term requirements evolution. They were responsible

192 N.A. Ernst, J. Mylopoulos, and Y. Wang

for the development of missile warning software. The study produced some in-
valuable information on how change was occurring in the project: for example,
108 requirements were changed, and of this figure, 59% were additions (scope
creep). They attempt to produce a predictive model of changes, but it isn’t clear
how generalizable such a model would be.

Similar research is reported by Basili and Weiss [8], in the context of another
military project, the A-7 control software. They describe the nature of require-
ments changes on the project. The biggest issue seemed to be that many of the
facts used in the requirements document were simply incorrect (51% of errors).
They also categorize the errors from trivial to formidable. Although only one of
the latter was encountered, it required 4 person-weeks of effort to resolve.

Lormans et al. [26] motivates a more structured approach to requirements
management. They used a formal requirements management system, but en-
countered difficulty in exchanging requirement models with clients. Such ‘mod-
els’ were often in text form, or semi-structured representations. They propose a
more elaborate management model that can address some of these challenges.

Wiegers [27] discusses four common tools for requirements management. To
some degree each support the notion of managing evolving requirements. There
is a question as to how well these tools reflect the reality in the code. Typi-
cally the tools store requirements as objects or relations, and then allow various
operations, such as mapping to test suites or design documents. The biggest
challenge is often maintaining traceability links between requirements and im-
plementation. Roshandel et al. [28] discuss one approach for managing architec-
tural evolution in sync with code. Another approach is to ignore everything but
the source code, and reverse engineering requirements from there, as described
in Yu et al. [29]. Finally, managing requirements will require configuration man-
agement tools similar to CVS, Subversion, and other code repositories. Tools
like diff or patch need analogues in the model domain. Work in model merging,
e.g., Niu et al. [30] will be important here.

Another emerging issue is the design of dynamic, adaptive software-based
system. We discuss one approach to design such a system in section 4. Such
systems are composed of multiple components, which may not be under one’s
direct control. Such systems are often categorized as Software as Service (SaaS)
or Service-Oriented Architecture (SOA) domains. For these domains, we view re-
quirements as the business drivers that specify which components, and in what
priority, should be composed. A paper by Berry et al. [31] provides a useful
‘four-level’ characterization of the nature of the compositions and adaptations
involved: the levels correspond to who (or what) is doing the requirements anal-
ysis: 1) the designer, on the domain; 2) the adaptive system, upon encountering
some new condition; 3) the designer of the system, attempting to anticipate the
nature of the second adaptation; or 4) a designer of new adaptation mechanisms.

Composing these components (or agents, or services) is an emerging research
problem, and one in which requirements evolution will have a major role. Work
on software customization Liaskos [32], for example, provides some insight into
techniques for managing such composition, although it ignores the problem of

Requirements Evolution and What (Research) to Do about It 193

changes in the underlying requirements themselves. Related work in Jureta et al.
[33] makes more explicit the idea that requirements cannot be fully specified prior
to system implementation. They characterize this approach as one in which
there is only one main requirement for the system, namely, that the system
be able to handle any stakeholder requirement. Determining which stakeholder
requirements are reasonable (i.e., within system scope) will be an important
research problem.

Recent work has focused on Commercial Off-The-Shelf (aka COTS) compo-
nents. A change in one component, driven by an evolution in a particular re-
quirement, might impact other components. Etien and Salinesi [34] term this
co-evolution. It is a challenge to integrate these COTS-based systems in such an
environment:

[COTS-based systems] are uncontrollably evolving, averaging up to 10
months between new releases, and are generally unsupported by their
vendors after three subsequent releases. (Boehm [35, p. 9])

The work that led to that analysis, Yang et al. [36], discusses the issue of
COTS-based software and requirements. They claim that defining requirements
before evaluating various COTS options prematurely commits the development
to a product that may turn out to be unsuitable. They argue for a concur-
rent development methodology that assesses COTS feasibility at the same time
as developing the system itself. In other words, they argue for a spiral model
approach (Boehm, 1988) to developing the requirements for such systems (not
surprisingly). Nuseibeh [37] makes a similar point with his ‘Twin Peaks’ model.
A requirements management tool that provided support for understanding the
features, capabilities, and likelihood of change in various COTS products would
be invaluable in such systems. Understanding how the requirements themselves
might evolve would be one important aspect.

Traceability is an aspect of requirements management that identifies inter-
dependencies between elements in the environment to elements within a system.
Traceability is a necessary, but not a sufficient mechanism for managing evolving
requirements. Without a link, the downstream impact of requirements changes
will not be clear. Traceability can be divided into two aspects, after Gotel and
Finkelstein [38]. One needs a trace from the various phenomena in the environ-
ment, to the specification of the requirements for the system. Once specified, a
link should also be established between the specification and the implementation.
The former case is relatively less studied, and is less amenable to formalization.

Requirements monitoring, first proposed in [39], and extended in [40], is one
mechanism for tracing between requirements and code. Monitoring involves in-
serting code into a system to determine how well requirements are being met.
A monitor records the usage patterns of the system, such as numbers of li-
censes in use. This information can be extracted and used to evolve the system,
possibly dynamically. In this sense, monitors are quite similar to control instru-
mentation in, for example, industrial plants. This approach is promising, but
does assume that requirements and environmental conditions can be specified
accurately enough that monitoring is possible.

194 N.A. Ernst, J. Mylopoulos, and Y. Wang

Traceability is more difficult with non-functional requirements, because by
definition these requirements do not have quantitative satisfaction criteria. Cleland-
Huang et al. [41] discuss a probabilistic information retrieval mechanism for
recovering non-functional requirements from class diagrams. Three broad cate-
gories of artifacts are defined. A softgoal model is used to assess change impacts
on UML artifacts, and an information retrieval approach is used to generate the
traceability links between the two models. Ramesh and Jarke [42] give a lengthy
overview of empirical studies of requirements traceability.

Monitoring also has a vital role to play in the design of autonomic systems
([43]). These are systems that can can self-repair, self-configure, self-optimize
and self-protect. Of course, the ability to self-anything presupposes that such
systems monitor the environment and their performance within that environ-
ment, diagnose failures or underperformance, and compensate by changing their
behaviour.

3 A Research Agenda for 2020

So, assume that we have our operating software system and changes occur that
need to be accommodated, somehow. The changes may be in the requirements of
the system. For example, new functions need to be supported, or system perfor-
mance needs to be enhanced. Increasingly, changes to requirements are caused
by laws and regulations intended to safeguard the public’s interests in areas of
safety, security, privacy and governance. Changes may also be dictated by chang-
ing domain assumptions, such as increased workload caused by increased business
activity. Last, but not least, changes may be dictated by new or evolving tech-
nologies that require migration to new platforms. New or evolving technologies
can also open new opportunities for fulfilling business objectives, for example by
offering new forms of business transactions, as with e-commerce and e-business.

Whatever the cause for a change, there are two basic approaches for dealing
with it. The first, more pedestrian, approach to change has software engineers
deal with it. This approach has traditionally been called software maintenance
and it is generally recognized as the most expensive phase in a software system’s
lifecycle. A second approach for dealing with a change is to make the system
adaptive in the first place, so that it can accommodate changes by using internal
mechanisms, without human intervention or at least with intervention from end
users only. The obvious advantage of this approach is that it makes change more
immediate and less costly. Its main drawback, on the other hand, is that change
needs to be thought out at design time, thereby increasing the complexity of the
design. The recent focus on autonomic and/or adaptive software in the research
community suggests that we are heading for automated approaches to software
evolution, much like other engineering disciplines did decades ago.

Next, we list a number of research strands and discuss some of the problems
that lie within their scope.

Infrastructure for requirements evolution. Research and practice on
code evolution has produced a wealth of research concepts and tools. Version

Requirements Evolution and What (Research) to Do about It 195

control and configuration management, reverse engineering and visualization
tools, refactoring and migration tools, among many. As indicated earlier, soft-
ware of the future will consist not only of code and documentation, but also
requirements and other types of models representing design, functionality and
variability. Moreover, their interdependencies, for example, traceability links, will
have to be maintained consistent and up-to-date for these artifacts to remain
useful throughout a system’s lifetime. Accordingly, the infrastructure for code
evolution will have to be extended to accommodate these other kinds of artifacts.
This is consistent with Model-Driven Software Engineering, as advocated by the
Object Management Group (OMG).

Focusing on requirements, an infrastructure for requirements evolution will
have to include tools for version control, configuration management and visu-
alization. These tools will have to accommodate the kinds of models used to
represent requirements. These models range from UML use cases that represent
functional aspects of the system-to-be, all the way to goal models that capture
stakeholder needs and rationalize any proposed functionality for the system-to-
be. The problem of evolving traceability links from requirements to code has
already been dealt with in the work of Jane Cleland-Huang and her colleagues
(e.g., [44, 41, 45]).

Understanding root causes for change. We are interested here in char-
acterizing generic root causes for change that dictate requirements evolution.
For example, businesses are moving into network-based business models, such
as service value networks and ecosystems. Such trends are bound to generate a
host of new requirements on operational systems that will have to be addressed
by requirements engineers and software reengineers. As another example, Gov-
ernments around the world have been introducing legislation to address grow-
ing concerns for security, privacy, governance and safety. This makes regulatory
compliance another major cause for requirements change. The introduction of
a single Act in the US (Sarbanes-Oxley Act) in 2002 resulted in a monumental
amount of change for business processes as well as software in business organi-
zations. The costs of this change have been estimated at US$5.8B for one year
alone (2005).

We would like to develop tools and techniques for systematically extracting
requirements from laws and regulations. In tackling this research task, it is im-
portant to note that the concepts of law, such as “right” and “obligation”, are
not requirements. Consider a law about privacy that makes it an obligation for
employers to protect and restrict the use of employee personal information stored
in their databases. This obligation may be translated in many different ways into
responsibilities of relevant actors so that the obligation is met. Each of these as-
signments of responsibility corresponds to a different set of requirements – i.e.,
stakeholder needs – that will have to be addressed by the software systems and
the business processes of an organization.

This is a broad, inter-disciplinary and long-term research strand. Some re-
search within its scope has already been done by Annie Anton, Travis Breaux

196 N.A. Ernst, J. Mylopoulos, and Y. Wang

and colleagues, e.g., [46]. This is also the topic of Alberto Siena’s PhD thesis,
see [47] for early results.

Evolution mechanisms. Once we have identified what are the changes to re-
quirements, we need to implement them by changing the system-at-hand. This
may be done manually, possibly with tool support, by developing novel reengi-
neering techniques. More interestingly, evolution may be done automatically by
using mechanisms, inspired by different disciplines (Biology, Control Theory,
Economics, Machine Learning, . . .). Doing research along this strand will re-
quire much experimentation to evaluate the effectiveness of different evolution
techniques.

A number of research projects are working on design principles for auto-
nomic and adaptive software systems (see, for example, on-going series of ICSE
workshops on Software Engineering for Adaptive and Self-Managing Systems,
http://www.hpi.uni-potsdam.de/giese/events/2008/seams2008/). Many of these
projects employ a monitor-diagnose-compensate feedback loop in order to sup-
port adaptation of a system in response to undesirable changes of monitored
data. The inclusion of such a feedback loop in support of adaptivity introduces
the problem of designing monitoring, diagnosis and compensation mechanisms in
the architecture of software systems. Control Theory offers a rich set of concepts
of research results on how to design such loops in the realm of real-time con-
tinuous processes. Unfortunately, the development of such a theory for discrete
systems is still in its early stages (though work has been done, see for example
[48]).

Design for evolution. Some designs are better suited for evolution than others.
For example, a design that can deliver a given functionality in many different
ways is better than one that delivers it in a single way. Such designs are said to
have high variability.

Variability is an important topic in many scientific disciplines that study
variations among the members of a species, or a class of phenomena. In fact,
the theory of evolution as presented by Darwin [49] holds that variability exists
in the inheritable traits possessed by individual organisms of a species. This
variability may result in differences in the ability of each organism to reproduce
and survive within its environment. And this is the basis for the evolution of
species. Note that a species in Biology corresponds to a high variability software
system in Software Engineering, while an individual organism corresponds to a
particular configuration of a high variability software system.

Variability has been studied in the context of product families [50], where vari-
ation points define choices that exist within the family for a particular feature
of the family. The space of alternative members of a family can be characterized
by a feature model [51]. Feature models capture variability in the design space
of a product family, or a software system for that matter. They tell us what
configurations of features are consistent and can co-exist within one configura-
tion. For example, variation points may arise from the operating platform on
which a family member will run (Windows, Linux, MacOS), or the weight of the

Requirements Evolution and What (Research) to Do about It 197

functionality offered (personal, business, pro). Problem variability, on the other
hand, focuses on variability in the problem to be solved. For instance, schedul-
ing a meeting may be accomplished by having the initiator contact potential
participants to set a time and location. Alternatively, the initiator may submit
her request to a meeting scheduler who does everything. The alternatives here
characterize the structure of the problem to be solved and have nothing to do
with features that the system-to-be will eventually have.

Designing for variability through analysis of both the problem and design
space will remain a fruitful area of research with Requirements Engineering. See
[32] for a PhD thesis that focuses on problem variability.

Variability of biological species changes over time, as variants are created
through mutation or other mechanisms, while others perish. We need compara-
ble mechanisms for software through which the set of possible instances for a
software system changes over time. In particular, it is important to study two
forms of variability change: means-based variability, and ends-based variability.

Means-based variability change leaves the ends/purpose of a software system
unchanged, but changes the means through which the ends can be achieved.
For example, consider a meeting scheduling system that offers a range of alter-
natives for meeting scheduling (e.g., user/system collects timetable constraints
from participants, user/system selects meeting timeslot). Means-based variabil-
ity may expand the ways meetings can be scheduled, for example, by adding
a ”meeting scheduling by decree” option where the initiator sets the time and
expects participants to re-arrange their schedules accordingly.

Ends-based variability change, on the other hand, changes the purpose of
the system itself. For instance, the meeting scheduler needs to be turned into
a project management software system, or an office management toolbox. In
this case, care needs to be exercised in managing scarce resources (e.g., rooms,
people’s time). Desai et al. [52] offers a promising direction for research on this
form of variability change. Along a different path, Rommes and America [53]
proposes a scenario-based approach to creating a product line architecture that
does take into account possible long-term changes. through the use of strategic
scenarios.

Modularity is another fundamental trait of evolvable software systems. Mod-
ularity has been researched throughly since the early 70s. A system is highly
modular if it consists of components that have high (internal) cohesion and
low (external) coupling. A highly modular system can have some of its compo-
nents change with low impact on other components. Interestingly, Biology has
also studied how coupling affects evolution. In particular, organisms in nature
continuously co-evolve both with other organisms and with a changing abiotic
environment. In this setting, the ability of one species to evolve is bounded
by the characteristics of other species that it depends on. Accordingly, Kauff-
man [54] introduces the NKC model, named after the three main components
that determine the behaviors of species’ interaction with one another. According
to the model, the co-evolution of a system and its environment is the equilib-
rium of external coupling and internal coupling. [55] presents a very preliminary

198 N.A. Ernst, J. Mylopoulos, and Y. Wang

attempt to use this model to account for the co-evolution of software systems
along with their environment.

Modularity and variability are clearly key principles underlying the ability
of a species to evolve. It would be interesting to explore other principles that
underlie evolvability.

There are deeper research issues where advances will have a major influence
on solutions for the problem-at-hand. We mention three such issues:

Science of design. According to H. Simon’s vision [56], a theory of design that
encompasses at least three ingredients: (a) the purpose of an artifact, (b) the
space of alternative designs, (c) the criteria for evaluating alternatives. Design
artifacts that come with these ingredients will obviously be easier to evolve.

Model evolution. Models will be an important (perhaps the) vehicle for dealing
with requirements evolution. Unfortunately, the state-of-the-art in modeling is
such that models become obsolete very quickly, as their subject matter evolves.
In Physics and other sciences, models of physical phenomena do not need to
evolve because they capture invariants (immutable laws).

We either need here a different level of abstraction for modeling worlds of in-
terest to design (usually technical, social and intentional), so that they capture
invariants of the subject matter. Alternatively, we need techniques and infras-
tructures for model evolution as their subject matter changes.

Evolutionary design.2 Extrapolating from Darwin’s theory of evolution where
design happens with no designer [57], we could think of mechanisms through
which software evolves without any master purpose or master designer. An ex-
ample of non-directed design is the Eclipse platform (eclipse.org). Rather than
one centrally directed, purpose-driven technology, Eclipse has evolved into an
ecology supporting multiple components, projects and people, leveraging the
advantages of open-source licences. These software ecologies act as incubators
for new projects with diverse characteristics. It would be fruitful to understand
better the evolutionary processes taking place in these ecologies and invent other
mechanisms for software evolution that do not involve a single master designer
(also known as intelligent design in some places . . .) This is in sharp contrast to
Simon’s vision. At the same time, this is an equally compelling one.

4 Monitoring Requirements

Requirement monitoring aims to track a system’s runtime behavior so as to
detect deviations from its requirement specification. Fickas and Feather’s work
([58, 39]) presents a run-time technique for monitoring requirements satisfac-
tion. This technique identifies requirements, assumptions and remedies. If an
assumption is violated, the associated requirement is denied, and the associated
remedies are executed. The approach uses a Formal Language for Expressing As-
sumptions (FLEA) to monitor and alert the user of any requirement violations.
2 . . . or, “Darwin’s dangerous idea” [57].

Requirements Evolution and What (Research) to Do about It 199

Along similar lines, Robinson has proposed a requirements-monitoring frame-
work named ReqMon [59]. In this framework, requirements are represented in
the goal-oriented requirements modeling language KAOS [60] and through sys-
tematic analysis techniques, monitors are extracted that are implemented in
commercial business process monitoring software.

We present an alternative approach to requirements monitoring and diagno-
sis. The main idea of the approach is to use goal models to capture requirements.
From these, and on the basis of a number of assumptions, we can automatically
derive monitoring specifications and generate diagnoses to recognize system fail-
ures. The proposal is based on diagnostic theories developed in AI, notably in
Knowledge Representation and AI Planning research [61].

The monitoring component monitors requirements and generates log data
at different levels of granularity that can be tuned adaptively depending on
diagnostic feedback. The diagnostic component analyzes generated log data and
identifies errors corresponding to aberrant system behaviors that lead to the
violation of system requirements. When a software system is monitored with
low granularity, the satisfaction of high level requirements is monitored. In this
case, the generated log data are incomplete and many possible diagnoses can
be inferred. The diagnostic component identifies the ones that represent root
causes.

Software requirements models may be available from design-time, generated
during requirements analysis, or they may be reverse engineered from source
code using requirements recovery techniques (for example, Yu et al. [29]). We
assume that bi-directional traceability links are provided, linking source code to
the requirements they implement.

4.1 Preliminaries

Goal models have been used in Requirement Engineering (RE) to model and
analyze stakeholder objectives [60]. Functional requirements are represented as
hard goals, while non-functional requirements are represented as soft goals [62].
A goal model is a graph structure, where a goal can be AND- or OR- decomposed
into subgoals and/or tasks. Means-ends links further decompose leaf level goals
to tasks (“actions”) that can be performed to fulfill them. At the source code
level, tasks are implemented by simple procedures or composite components that
are treated as black boxes for the purposes of monitoring and diagnosis. This
allows a software system to be monitored at different levels of abstraction.

Following [63], if goal G is AND/OR decomposed into subgoals G1, . . . , Gn,
then all/at-least-one of the subgoals must be satisfied for G to be satisfied.
Apart from decomposition links, hard goals and tasks can be related to each
other through MAKE(++) and BREAK(--) contribution links. If a MAKE (or
a BREAK) link leads from goal G1 to goal G2, G1 and G2 share the same (or
inversed) satisfaction/denial labels.

As an extension, we associate goals and tasks with preconditions and postcon-
ditions (hereafter effects, to be consistent with AI terminology) and monitoring
switches. Preconditions and effects are propositional formulae, in Conjunctive

200 N.A. Ernst, J. Mylopoulos, and Y. Wang

Normal Form (CNF), whose truth values are monitored and analyzed during
diagnostic reasoning. Monitoring switches can be switched on/off to indicate
whether satisfaction of the requirements corresponds to the goals/tasks is to be
monitored at run time.

The propositional satisfiability (SAT) problem is concerned with determining
whether there exists a truth assignment to variables of a propositional formula
that makes the formula true. If such a truth assignment exists, the formula is
said to be satisfiable. A SAT solver is any procedure that determines whether a
propositional formula is satisfiable, and identifies the satisfying assignments of
variables if it is.

The earliest and most prominent SAT algorithm is DPLL (Davis-Putnam-
Logemann-Loveland) [64]. Even though the SAT problem is inherently
intractable, there have been many improvements to SAT algorithms in recent
years. Chaff ([65]), BerkMin ([66]) and Siege ([67]) are among the fastest SAT
solvers available today. Our work uses SAT4J ([68]), an efficient SAT solver that
inherits a number of features from Chaff.

4.2 Framework Overview

Satisfaction of a software system’s requirements can be monitored at different
levels of granularity. Selecting a level involves a tradeoff between monitoring
overhead and diagnostic precision. Lower levels of granularity monitor leaf level
goals and tasks. As a result, more complete log data are generated, leading
to more precise diagnoses. The disadvantage of fine-grained monitoring is high
overhead and the possible degradation of system performance. Higher levels of
granularity monitor higher level goals. Consequently, less complete log data are
generated, leading to less precise diagnoses. The advantage is reduced monitoring
overhead and improved system performance.

We provide for adaptive monitoring at different levels of granularity by asso-
ciating monitoring switches with goals and tasks in a goal model. When these
switches are turned on, satisfaction of the corresponding goals/tasks is monitored
at run time. The framework adaptively selects a monitoring level by turning these
switches on and off, in response to diagnostic feedback. Monitored goals/tasks
need to be associated with preconditions and effects whose truth values are mon-
itored and are analyzed during diagnostic reasoning. Preconditions and effects
may also be specified for goals/tasks that are not monitored. This allows for
more precise diagnoses by constraining the search space.

Figure 1 provides an overview of our monitoring and diagnostic framework.
The input to the framework is the monitored program’s source code, its cor-
responding goal model, and traceability links. From the input goal model, the
parser component obtains goal/task relationships, goals and tasks to be moni-
tored, and their preconditions and effects. The parser then feeds this data to the
instrumentation and SAT encoder components in the monitoring and diagnostic
layers respectively.

Requirements Evolution and What (Research) to Do about It 201

Fig. 1. Framework Overview

In the monitoring layer, the instrumentation component inserts software
probes into the monitored program at the appropriate places. At run time, the
instrumented program generates log data that contains program execution traces
and values of preconditions and effects for monitored goals and tasks. Offline,
in the diagnostic layer, the SAT encoder component transforms the goal model
and log data into a propositional formula in CNF which is satisfied if and only
if there is a diagnosis. A diagnosis specifies for each goal and task whether or
not it is fully denied. A symbol table records the mapping between propositional
literals and diagnosis instances. The SAT solver finds one possible satisfying as-
signment, which the SAT decoder translates into a possible diagnosis. The SAT
solver can be repeatedly invoked to find all truth assignments that correspond
to all possible diagnoses.

The analyzer analyzes the returned diagnoses, searching for denials of system
requirements is found. If denials of system requirements are found, they are
traced back to the source code to identify the problematic components. The
diagnosis analyzer may then increase monitoring granularity by switching on
monitoring switches for subgoals of a denied parent goal. When this is done,
subsequent executions of the instrumented program generate more complete log
data. More complete log data means fewer and more precise diagnoses, due to
a larger SAT search space with added constraints. If no system requirements
are denied, monitoring granularity may also be decreased to monitor fewer (thus
higher level) goals in order to reduce monitoring overhead. The steps described
above constitute one execution session and may be repeated.

4.3 Formal Foundations

This section presents an overview of the theoretical foundations of our frame-
work. The theories underlying our diagnostic component (presented in section
4.2) are adaptations of the theoretical diagnostic frameworks proposed in [69,

202 N.A. Ernst, J. Mylopoulos, and Y. Wang

70, 61]. Interested readers can refer to [2] for a complete and detailed account of
the presented framework.

Log Data. Log data consists of a sequence of log instances, each associated
with a specific timestep t. A log instance is either the observed truth value of
a domain literal, or an occurrence of a particular task. We introduce predicate
occa(ai, t) to specify occurrence of task ai at timestep t. For example, if literal
p is true at timestep 1, task a is executed at timestep 2, and literal q is false at
timestep 3, their respective log instances are: p(1), occa(a, 2), and ¬q(3).

Successful execution of tasks in an appropriate order leads to satisfaction of
the root goal. A goal is satisfied in some execution secession s if and only if all the
tasks under its decomposition are successfully executed in s. Goal satisfaction
or denial may vary from session to session. The logical timestep t is incremented
by 1 each time a new batch of monitored data arrives and is reset to 1 when a
new session starts.

We say a goal has occurred in s if and only if all the tasks in its decomposition
have occurred in s. Goal occurrences are not directly observable from the log
data. Instead, our diagnostic component infers goal occurrence from task occur-
rences recorded in the log. Two timesteps, t1 and t2, are associated with goal
occurrences, representing the timesteps of the first and the last executed task in
the goal’s decomposition in s. We introduce predicate occg(gi, t1, t2) to specify
occurrences of goals gi that start and end at timesteps t1 and t2 respectively. For
example, suppose goal g is decomposed into tasks a1 and a2, and we have in the
log data occa(a1, 4), occa(a2, 7) indicating that tasks a1 and a2 have occurred at
timesteps 4 and 7 respectively. Then occg(g, 4, 7) is inferred to indicate that g’s
occurrence started and ended at timesteps 4 and 7.

Theories of Diagnosis. The diagnostic component analyzes generated log
data and infers satisfaction/denial labels for all the goals and tasks in a goal
model. This diagnostic reasoning process involves two steps: (1), inferring sat-
isfaction/denial labels for goals/tasks that are monitored; and (2), propagating
these satisfaction/denial labels to the rest of the goal model. Note that if a
goal/task is not monitored, but is associated with a precondition and an effect
whose truth values are recorded in the log or can be inferred from it, then its
satisfaction/denial is also inferred from step 1.

Intuitively, a goal g can be denied in one of three ways: (1) g itself can be
denied, if it is monitored or if the truth values of its precondition and effect
are known; or (2) one of g’s children or parents is denied and the deniability
is propagated to g through AND/OR decomposition links; or (3) one of the
goals/tasks that are linked to g through MAKE(++)/BREAK(--) contribution
links is denied/satisfied, in which case the denial label is propagated to g. As
with goals, tasks get their denial labels if they themselves are denied, or if their
parents are denied and denial labels are propagated down to them.

We reduced the problem of searching for a diagnosis to that of the satisfiability
of a propositional formula Φ, where Φ is the conjunction of the following axioms:

Requirements Evolution and What (Research) to Do about It 203

(1) axioms for reasoning with goal/task denials (step 1); and (2) axioms for
propagating inferred goal/task denials to the rest of the goal model (step 2).

Axiomatization of Deniability. The denial of goals and tasks is formulated
in terms of the truth values of the predicates representing their occurrences,
preconditions and effects. We introduce a distinct predicate FD to express full
evidence of goal and task denial at a certain timestep or during a specific session.
FD predicates take two parameters: the first parameter is either a goal or a task
specified in the goal model, and the second parameter is either a timestep or a
session id. For example, predicates FD(g1, 5) and FD(a1, s1) indicate goal g1
and task a1 are denied at timestep 5 and session s1 respectively.

Intuitively, if a task’s precondition is true and the task occurred at timestep
t, and if its effect holds at the subsequent timestep t + 1, then the task is not
denied at timestep t + 1. Two scenarios describe task denial: (1)3 if the task’s
precondition is false at timestep t, but the task still occurred at t; or (2) if the
task occurred at timestep t, but its effect is false at the subsequent timestep
t + 1. Task denial axioms are generated for tasks to capture both of these cases.

We illustrate task denial axioms using the following example. Consider a task
a with precondition p and effect q. If the monitoring component generates one
of the following two log data for a, task a’s denial is inferred:

Log data 1: ¬p(1); occa(a, 1)
Log data 2: p(1); occa(a, 1); ¬q(2)
The first log data corresponds to the first task failure scenario: a’s precon-

dition p was false at timestep 1, but a still occurred at 1. The second log data
corresponds to the second failure scenario: a’s precondition was true and a oc-
curred at timestep 1, but its effect q was false at the subsequent timestep 2. The
diagnostic component infers FD(a, 2) in both of these cases, indicating that task
a has failed at timestep 2.

These failure scenarios also apply to goals. Recall that goal occurrences are
indexed with two timesteps t1 and t2 that correspond to the occurrence timesteps
of the first and last executed tasks under goal’s decomposition. A goal g with
precondition p and effect q is denied if and only if (1) goal occurrence started at
t1 when p is false; or (2) after goal occurrence finished at t2 + 1, q is false.

For instance, if g is decomposed to tasks a1 and a2, the following sample log
data correspond to the two failure scenarios for goal g:

Log data 3: ¬p(1); occa(a1, 1); occa(a2, 2)
Log data 4: p(1); occa(a1, 1); occa(a2, 2); ¬q(3)
From either of the two log data, the diagnostic component infers occg(g, 1, 2),

indicating that g’s occurrence started and ended at timesteps 1 and 2 respec-
tively. Log data 3 and 4 correspond to the first and second goal failure scenarios
respectively: p is false when g’s occurrence started at timestep 1, and q is false
after g’s occurrence at timestep 3. In either of these cases, the diagnostic com-
ponent infers FD(g, 3), indicating that goal g is denied at time step 3.

3 In many axiomatizations it is assumed that occa(a, t) → p(t).

204 N.A. Ernst, J. Mylopoulos, and Y. Wang

We say a goal or a task is denied during an execution session s if the goal/task
is denied at some timestep t within s. Returning to the above examples, if
FD(a, 2) and FD(g, 3) are inferred, and if timesteps 2 and 3 fall within execu-
tion session s1, the diagnostic component further infers FD(a, s1) and FD(g, s1).
Inferring goal/task denials for an execution session is useful for efficiently prop-
agating these denial labels to the rest of the goal model.

In the AI literature, propositional literals whose values may vary from
timestep to timestep are called fluents. A fluent f can take on any arbitrary
value at timestep t + 1 if it is not mentioned in the effect of a task that is exe-
cuted at timestep t. Axioms are needed to specify that unaffected fluents retain
the same the values from timestep to timestep. An axiom is generated to specify
that if the value of a fluent f changes at timestep t, then one of the tasks/goals
that has f in its effect must have occurred at t − 1 and not have been denied
at t. In other words, the truth value of f reminds constant from one timestep
to the next, until one of the actions/goals that have f in its effect is executed
successfully. For example, consider a task a with effect q, and assume q is not
in any other goal’s/task’s effect. Suppose the log data include: ¬q(1), occa(a, 3),
and q(5). Then an axiom is generated to infer ¬q(2), ¬q(3),and q(4).

4.4 Axiomatization of a Goal Model

Goal/task denials, once inferred, can be propagated to the rest of the goal graph
through AND/OR decomposition links and MAKE/BREAK contribution links.
Axioms are generated to describe both label propagation processes.

If a goal g is AND (or OR) decomposed into subgoals g1,. . . , gn, and tasks
a1, . . . , am, then g is denied in a certain session, s, if and only if at least one (or
all) of the subgoals or tasks in its decomposition is (or are) denied in s.

Goals and tasks can be related to each other through various contribution
links: ++S, --S, ++D, --D, ++, --. Link ++ and link -- are shorthand for the ++S
and ++D, and the --S and --D relationships, respectively, and they represent
strong MAKE(++) and BREAK(--) contributions between goals/tasks. Given
two goals g1 and g2, the link g1

++S−−−→ g2 (respectively g1
−−S−−−→ g2) means that

if g1 is satisfied, then g2 is satisfied (respectively denied). But if g1 is denied,
we cannot infer denial (or respectively satisfaction) of g2. The meanings of links
++D and --D are similar to those of ++S and --S. Given two goals g1 and g2, the
link g1

++D−−−→ g2 (respectively g1
−−D−−−→ g2) means that if g1 is denied, then g2 is

denied (respectively satisfied). But if g1 is satisfied, we cannot infer satisfaction
(or respectively denial) of g2.

When contribution links are present, the goal graph may become cyclic and
conflicts may arise. We say a conflict holds if we have both FD(g, s) and ¬FD
(g, s) in one execution session s. Since it does not make sense, for diagnostic pur-
poses, to have a goal being both denied and satisfied at the same time, conflict
tolerance, as in (Sebastiani et al., 2004), is not allowed within our diagnostic
framework. In addition, the partial (weaker) contribution links HELP(+) and

Requirements Evolution and What (Research) to Do about It 205

HURT(−) are not included between hard goals/tasks because we do not reason
with partial evidence for hard goal/task satisfaction and denial.

Diagnosis Defined. In our framework, a diagnosis specifies for each goal/task
in the goal model whether or not it is fully denied. More formally, a diagnosis
D is a set of FD and ¬FD predicates over all the goals and tasks in the goal
graph, such that D union Φ (D ∪ Φ) is satisfiable. Each FD or ¬FD predicate
in D is either indexed with respect to a timestep or a session. For example, if
goal g and task a are both denied at timestep 1 during execution session s1,
the diagnosis for the system would contain FD(a, 1), FD(a, s1), FD(g, 1), and
FD(g, s1).

Our diagnostic approach is sound and complete, meaning that for any D as
defined above, D is a diagnosis if and only if D ∪ Φ is satisfiable. A proof of this
soundness and completeness property can be found in (Wang et. al, 2007).

Task level denial is the core or root cause of goal level denial. In addition,
if a task is denied at any timestep t during an execution session s, it is denied
during s. Therefore, it is more useful, for purposes of root cause analysis, that
the diagnostic component infer task level denials during specific sessions. We
introduce the concept of core diagnosis to specify for each task in the goal graph
whether or not it is fully denied in an execution session. More formally, a core
diagnosis (CD) is a set of FD and ¬FD predicates over all the tasks in the
goal graph, indexed with respect to a session, such that CD ∪ Φ is satisfiable.
Consider the same example where goal g and task a are denied at timestep 1
during the execution session s1. The core diagnosis for the system would only
contain FD(a, s1), indicating that the root cause of requirement denial during
s1 is the failure of task a.

Inferring all core diagnoses for the software system can present a scalability
problem. This is because all the possible combinations of task denials for tasks
under a denied goal are returned as possible core diagnoses. Therefore, in the
worst-case, the number of core diagnoses is exponential to the size of the goal
graph. To address the scalability problem, we introduce the concept of participat-
ing diagnostic components. These correspond to individual task denial predicates
that participate in core diagnoses, without their combinations. A participating
diagnostic component, PDC, is an FD predicate over some task in the goal
model, indexed with respect to a session, such that PDC ∪ Φ is satisfiable.

In many cases, it may be neither practical nor necessary to find all core diag-
noses. In these cases, all participating diagnostic components can be returned.
However, it is also important to note that, in other cases, one may want to find
all core diagnoses instead of all participating diagnostic components. This is be-
cause core diagnoses contain more diagnostic information, such as which tasks
can and can not fail together.

Our diagnostic approach is sound and complete, meaning that it finds all
diagnoses, core diagnoses, and participating diagnostic components for the soft-
ware system. The theory outlined above has been implemented in terms of four
main algorithms: two encoding algorithms for encoding an annotated goal model

206 N.A. Ernst, J. Mylopoulos, and Y. Wang

into a propositional formula Φ, and two diagnostic algorithms for finding all core
diagnoses and all participating diagnostic components.

The difference between the two encoding algorithms lies in whether the al-
gorithm preprocesses the log data when encoding the goal model into Φ. The
naive algorithm does not preprocess log data and generates a complete set of
axioms for all the timesteps during one execution session. The problem with this
is the exponential increase in the size of Φ with the size of a goal model. The
second and improved algorithm addresses this problem by preprocessing the log
data and only generating necessary axioms for the timesteps that are actually
recorded in the log data. As demonstrated in [2], this improved algorithm per-
mits the same diagnostic reasoning process while keeping the growth of the size
of Φ polynomial with respect to the size of the goal model.

The results of our framework evaluation (subsection 4.6) show that our ap-
proach scales to the size of the goal model, provided the encoding is done with
log file preprocessing and the diagnostic component returns all participating di-
agnostic components instead of all core diagnoses. Interested readers can refer
to [2] for a detailed account of algorithms and implementation specifics.

4.5 A Working Example

We use the SquirrelMail [71] case study as an example to illustrate how our
framework works. SquirrelMail is an open source email application that con-
sists of 69711 LOC written in PHP. Figure 2 presents a simple, high-level goal
graph for SquirrelMail with 4 goals and 7 tasks, shown in ovals and hexagons,
respectively.

The SquirrelMail goal model captures the system’s functional requirements
for sending an email (represented by the root goal g1). The system first needs to
retrieve and load user login page (task a1), then process the sent mail request
(goal g2), and finally send the email (task a7). If the email IMAP server is found,
SquirrelMail loads the compose page (goal g3), otherwise, it reports IMAP not

Fig. 2. Squirrel Mail Goal Model

Requirements Evolution and What (Research) to Do about It 207

Table 1. Squirrel Mail Annotated Goal Model

Goal/
Task

Monitor
switch

Precondition Effect

a1 on correctURL entered login form loaded
a2 on ¬wrongIMAP∧login form

loaded
(user logged in ∧ correct
pin) ∨ (¬user logged in ∧

¬correct pin)
a3 off user logged in form shown
a4 off form shown form entered
a5 off form entered webmail started
a6 on wrongIMAP error reported
a7 on webmail started email sent
g1 off correct URL entered email sent ∨ error reported
g2 off login form loaded ∨

wrongIMAP
webmail started ∨ error

reported
g3 off login form loaded ∧

¬wrongIMAP
webmail started

g4 on user logged in webmail started

found error (task a6). Goal g3 (get compose page) can be achieved by executing
four tasks: a2 (login), a3 (show form), a4 (enter form), and a5 (start webmail).

Table 1 lists the details of each goal/task in the SquirrelMail goal model with
its monitoring switch status (column 2), and associated precondition and effect
(columns 3 and 4). In this example, the satisfaction of goal g4 and tasks a1, a2, a6,
and a7 are monitored.

SquirrelMail’s runtime behavior is traced and recorded as log data. Recall that
log data contains truth values of literals specified in monitored goals’/tasks’ pre-
conditions and effects, as well as the occurrences of all tasks. Each log instance
is associated with a timestep t. The following is an example of log data from the
SquirrelMail case study:

correct URL entered(1), occa(a1, 2), login form loaded(3), ¬wrongIMAP
(4), occa(a2, 5), correct pin(6), user logged in(6), occa(a3, 7), occa(a4, 8),
occa(a5, 9), ¬webmail started(10), occa(a7, 11), ¬email sent(12).

The log data contains two errors (¬webmail started(10), and occa(a7, 11)): (1)
the effect of g4 (web mail started) was false, at timestep 10, after all the tasks
under g4’s decomposition (a3, a4, and a5) were executed; and (2) task a7 (send
message) occurred at timestep 11 when its precondition webmail started was
false at timestep 10. The diagnostic component analyzes the log data and in-
fers that goal g4 and the task a7 are denied during execution session s. The
diagnostic component further infers that if g4 is denied in s, at least one of
g4’s subtasks, a3, a4, and a5, must have been denied in s. The following seven
core diagnoses are returned to capture all possible task denials for a3, a4,
and a5:

208 N.A. Ernst, J. Mylopoulos, and Y. Wang

Fig. 3. Partial ATM Goal Model

Core Diagnosis 1: FD(a3, s); FD(a7, s)
Core Diagnosis 2: FD(a4, s); FD(a7, s) Core Diagnosis 3: FD(a5, s); FD(a7, s)
Core Diagnosis 4: FD(a3, s); FD(a4, s); FD(a7, s)
Core Diagnosis 5: FD(a3, s); FD(a5, s); FD(a7, s)
Core Diagnosis 6: FD(a4, s); FD(a5, s); FD(a7, s)
Core Diagnosis 7: FD(a3, s); FD(a4, s); FD(a5, s); FD(a7, s)

Instead of finding all core diagnoses, we can configure the diagnostic com-
ponent to find all participating diagnostic components. The following 4 par-
ticipating diagnostic components are returned to capture individual task
denials:

Participating Diagnostic Component 1: FD(a3, s)
Participating Diagnostic Component 2: FD(a4, s)
Participating Diagnostic Component 2: FD(a5, s)
Participating Diagnostic Component 3: FD(a7, s)

Requirements Evolution and What (Research) to Do about It 209

4.6 Experimental Evaluation

In this section, we report on the performance and scalability of our framework
and discuss its limitations. We applied our framework to a medium-size public
domain software system, an ATM (Automated Teller Machine) simulation case
study, to evaluate the correctness and performance of our framework. We show
that our solution can scale up to the goal model size and can be applied to
industrial software applications with medium-sized requirements.

Framework Scalability. The ATM simulation case study is an illustration
of OO design used in a software development class at Gordon College [72]. The
application simulates an ATM performing customers’ withdraw, deposit, transfer
and balance inquiry transactions. The source code contains 36 Java Classes with
5000 LOC, which we reverse engineered to its requirements to obtain a goal
model with 37 goals and 51 tasks. We show a partial goal graph with 18 goals
and 22 tasks in Figure 3.

We conducted two sets of experiments. The first set contains five experiments
with different levels of monitoring granularity, all applied to the goal model
shown in Figure 3. This allows us to access the tradeoff between monitoring
granularity and diagnostic precision. The second set reports 20 experiments on
20 progressively larger goal models containing 50 to 1000 goals and tasks. We
obtain these larger goal models by cloning the ATM goal graph to itself. The
second set of experiments shows that our diagnostic framework scales to the size
of the relevant goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.

The first set of experiments contains 5 runs. We gradually increased monitor-
ing granularity from monitoring only the root goal to monitoring all leaf level
tasks. For each experiment, we recorded: (1) numbers of generated literals and
clauses in the SAT propositional formula Φ; (2) the number of participating di-
agnostic components returned; and (3) the average time taken, in seconds, to
find one diagnostic component. When the number of monitored goals/tasks was
increased from 1 to 11, the number of returned participating diagnostic compo-
nents decreased from 19 and 1, and the average time taken to find one diagnostic
component increased from 0.053 to 0.390 second.

These experiments showed that diagnostic precision is inversely proportional
to monitoring granularity. When monitoring granularity increases, monitoring
overhead, SAT search space, and average time needed to find a single participat-
ing diagnostic component all increase. The benefit of monitoring at a high level
of monitoring granularity is that we are able to infer fewer participating diag-
nostic components identifying a smaller set of possible faulty components. The
reverse is true when monitoring granularity decreases: we have less overhead, but
the number of participating diagnostic components increases if the system is be-
having abnormally. When the system is running correctly (no requirements are
denied, and no faulty component is returned), minimal monitoring is advisable.

The second set of experiments, on 20 progressively larger goal models (con-
taining from 50 to 1000 goals and tasks) allows us to evaluate the scalability
of the diagnostic component. We injected one error in one of the tasks. Each

210 N.A. Ernst, J. Mylopoulos, and Y. Wang

of the experiments was performed with complete (task level) monitoring. Each
therefore returned only a single diagnostic component. In addition, all experi-
ments used the encoding algorithm that preprocesses log data. This was done to
ensure scalability. For each experiment, we recorded: (1) time taken to encode
the goal model into the SAT propositional formula Φ; (2) time taken by the SAT
solver to solve Φ plus the time taken to decode the SAT result into a diagnostic
component; and (3) the sum of the time periods recorded in (1) and (2), giving
the total time taken to find the participating diagnostic component.

Experimental results show that, as the number of goals/tasks increased from
50 to 1000, the number of literals and clauses generated in Φ increased from 81 to
1525 and from 207 to 4083 respectively. As a result, the total time taken to find
the participating diagnostic component increased from 0.469 to 3.444 seconds.
This second set of experiments shows that the diagnostic component scales to
the size of the goal model, provided the encoding is done with log preprocessing
and the diagnostic component returns all participating diagnostic components.
Our approach can therefore be applied to industrial software applications with
medium-sized requirement graphs.

Framework Limitations. Firstly, our approach assumes the correct specifica-
tion of the goal model, as well as the preconditions and effects for goals and
tasks. Errors may be introduced if specified preconditions and effects do not
completely or correctly capture the software system’s dynamics. Detecting and
dealing with discrepancies between a system’s implementation and its goal model
are beyond the scope of our work. We accordingly, assume that both the goal
model and its associated preconditions and effects are correctly implemented by
the application source code.

Secondly, the reasoning capability of our diagnostic component is limited by
the expressive power of propositional logic and the reasoning power of SAT
solvers. Propositional logic and SAT solvers express and reason using variables
with discrete values, which typically are Boolean variables that are either true or
false. As a result, our diagnostic component cannot easily deal with application
domains with continuous values.

Lastly, the reasoning power of our framework is also limited by the expres-
siveness of our goal modeling language. Goal models cannot express temporal
relations. Neither can they explicitly express the orderings of goals/tasks, or the
number of times goals/tasks must be executed. Therefore, our framework cannot
recognize temporal relations such as event patterns.

5 Conclusions

We have discussed requirements evolution as a research problem that has re-
ceived little attention until now, but will receive much attention in the future.
Our discussion included a review of past research, a speculative glimpse into
the future, and a more detailed look at on-going research on monitoring and
diagnosing software systems.

Requirements Evolution and What (Research) to Do about It 211

References

[1] Lubars, M., Potts, C., Richter, C.: A review of the state-of-practice in requirements
modelling. In: Intl. Symp. on Requirements Engineering, San Diego, CA (January
1993)

[2] Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: An automated approach to mon-
itoring and diagnosing requirements. In: International Conference on Automated
Software Engineering (ASE 2007), Atlanta, GA (October 2007)

[3] Lehman, M.: On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software 1, 213–221 (1980)

[4] Brooks, F.: The mythical man-month. Addison-Wesley, Reading (1975)
[5] Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (eds.): Software Evolution and

Feedback: Theory and Practice, 1st edn. Wiley, Chichester (2006)
[6] Ĝırba, T., Ducasse, S.: Modeling history to analyze software evolution. Journal

of Software Maintenance and Evolution: Research and Practice 18(3), 207–236
(2006)

[7] Xing, Z., Stroulia, E.: UMLDiff: an algorithm for objectoriented design di erencing.
In: Intl. Conf. on Automated Software Engineering, Long Beach, CA, USA, pp.
54–65 (2005)

[8] Basili, V.R., Weiss, D.M.: Evaluation of a software requirements document by
analysis of change data. In: Intl. Conf. on Software Engineering, San Diego, USA,
pp. 314–323 (1981)

[9] Basili, V.R., Perricone, B.T.: Software errors and complexity: An empirical inves-
tigation. Commun. ACM 27(1), 42–52 (1984)

[10] Harker, S.D.P., Eason, K.D., Dobson, J.E.: The change and evolution of require-
ments as a challenge to the practice of software engineering. In: IEEE International
Symposium on Requirements Engineering, pp. 266–272 (1993)

[11] Rajlich, V.T., Bennett, K.H.: A staged model for the software life cycle. IEEE
Computer 33(7), 66–71 (2000)

[12] Lientz, B.P., Swanson, B.E.: Software Maintenance Management: A Study of the
Maintenance of Computer Application Software in 487 Data Processing Organi-
zations. Addison-Wesley, Reading (1980)

[13] Rowe, D., Leaney, J., Lowe, D.: De ning systems evolvability - a taxonomy of
change. In: International Conference and Workshop: Engineering of Computer-
Based Systems, Maale Hachamisha, Israel, p. 45+ (1998)

[14] Vicente, K.J.: Ecological interface design: Progress and challenges. Human Fac-
tors 44, 62–78 (2002)

[15] Favre, J.-M.: Meta-model and model co-evolution within the 3d software space.
In: Intl. Workshop on Evolution of Large-scale Industrial Software Applications
at ICSM, Amsterdam (September 2003)

[16] Swanson, B.E.: The dimensions of maintenance. In: Intl. Conf. on Software Engi-
neering, San Francisco, California, pp. 492–497 (1976)

[17] Svensson, H., Host, M.: Introducing an agile process in a software maintenance
and evolution organization. In: European Conference on Software Maintenance
and Reengineering, Manchester, UK, March 2005, pp. 256–264 (2005)

[18] Nelson, K.M., Nelson, H.J., Ghods, M.: Technology exibility: conceptualization,
validation, and measurement. In: International Conference on System Sciences,
Hawaii, vol. 3, pp. 76–87 (1997)

[19] Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice 17(5), 309–332 (2005)

212 N.A. Ernst, J. Mylopoulos, and Y. Wang

[20] Chapin, N., Hale, J.E., Fernandez-Ramil, J., Tan, W.-G.: Types of software evolu-
tion and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice 13(1), 3–30 (2001)

[21] Felici, M.: Taxonomy of evolution and dependability. In: Proceedings of the Second
International Workshop on Unanticipated Software Evolution, USE 2003, Warsaw,
Poland, April 2003, pp. 95–104 (2003)

[22] Felici, M.: Observational Models of Requirements Evolution. PhD thesis, Univer-
sity of Edinburgh (2004),
http://homepages.inf.ed.ac.uk/mfelici/doc/IP040037.pdf

[23] Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide.
John Wiley & Sons, New York (1997)

[24] Lam, W., Loomes, M.: Requirements evolution in the midst of environmental
change: A managed approach. In: Euromicro. Conf. on Software Maintainance
and Reengineering, Florence, Italy, March 1998, pp. 121–127 (1998)

[25] Stark, G., Skillicorn, A., Ameele, R.: An examination of the e ects of requirements
changes on software releases. Crosstalk: Journal of Defence Software Engineering,
11–16 (December 1998)

[26] Lormans, M., van Dijk, H., van Deursen, A., Nocker, E., de Zeeuw, A.: Man-
aging evolving requirements in an outsourcing context: an industrial experience
report. In: International Workshop on Principles of Software Evolution, pp. 149–
158 (2004)

[27] Wiegers, K.E.: Automating requirements management. Software Devel- opment
Magazine 7(7) (July 1999)

[28] Roshandel, R., Van Der Hoek, A., Mikic-Rakic, M., Medvidovic, N.: Mae – a
system model and environment for managing architectural evolution. ACM Trans.
Softw. Eng. Methodol. 13(2), 240–276 (2004)

[29] Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A.: Reverse engineer-
ing goal models from legacy code. In: International Conference on Requirements
Engineering, Paris, pp. 363–372 (September 2005)

[30] Niu, N., Easterbrook, S., Sabetzadeh, M.: A categorytheoretic approach to syntac-
tic software merging. In: 21st IEEE International Conference on Software Main-
tenance (ICSM 2005), Budapest, Hungary (September 2005)

[31] Berry, D.M., Cheng, B.H.C., Zhang, J.: The four levels of requirements engineering
for and in dynamic adaptive systems. In: International Workshop on Requirements
Engineering: Foundation for Software Quality, Porto, Portugal (June 2005)

[32] Liaskos, S.: Acquiring and Reasoning about Variability in Goal Models. PhD the-
sis, University of Toronto (2008)

[33] Jureta, I., Faulkner, S., Thiran, P.: Dynamic requirements specification for adapt-
able and open service-oriented systems. In: Krämer, B.J., Lin, K.-J., Narasimhan,
P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 270–282. Springer, Heidelberg (2007)

[34] Etien, A., Salinesi, C.: Managing requirements in a co-evolution context. In: 13th
IEEE International Conference on Requirements Engineering, Paris, pp. 125–134
(September 2005)

[35] Boehm, B.: Some future trends and implications for systems and software engi-
neering processes. Systems Engineering 9(1), 1–19 (2006)

[36] Yang, Y., Bhuta, J., Boehm, B., Port, D.N.: Value-based processes for cots-based
applications. IEEE Software 22(4), 54–62 (2005)

[37] Nuseibeh, B.: Weaving together requirements and architectures. IEEE Computer
34(3), 115–119 (2001)

http://homepages.inf.ed.ac.uk/mfelici/doc/IP040037.pdf

Requirements Evolution and What (Research) to Do about It 213

[38] Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability
problem. In: International Conference on Requirements Engineering, pp. 94–101
(1994)

[39] Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
RE 1995: Proceedings of the Second IEEE International Symposium on Require-
ments Engineering, Washington, DC, USA (1995)

[40] Feather, M.S., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system
requirements and runtime behaviour. In: Ninth IEEE International Workshop on
Software Specification and Design (IWSSD-9), Isobe, JP, pp. 50–59 (1998)

[41] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.:
Goal-centric traceability for managing non-functional requirements. In: Intl. Conf.
Software Engineering, St. Louis, MO, USA, pp. 362–371 (2005)

[42] Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering 27(1), 58–93 (2001)

[43] Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Computer 36(1)
(January 2003)

[44] Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for
managing evolutionary change. Transactions on Software Engineering 29(9), 796–
810 (2003)

[45] Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classi cation of non-
functional requirements. Requirements Engineering 12(2), 103–120 (2007)

[46] Breaux, T., Antón, A.: Analyzing goal semantics for rights, permissions, and obli-
gations. In: International Requirements Engineering Conference, Paris, France,
pp. 177–186 (August 2005)

[47] Siena, A., Maiden, N., Lockerbie, J., Karlsen, K., Perini, A., Susi, A.: Exploring
the effectiveness of normative i* modelling: Results from a case study on food chain
traceability. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074,
pp. 182–196. Springer, Heidelberg (2008)

[48] Ramadge, P., Wonham, M.: Supervisory control of a class of discreteevent systems.
SIAM J. of Control and Optimization 25(1), 206–230 (1987)

[49] Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray,
London (1859)

[50] Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Softw. Pract. Exper. 35(8), 705–754 (2005)

[51] Kang, K.C., Kim, S., Lee, J., Kim, K.: Form: A feature-oriented reuse method.
Annals of Software Engineering 5, 143–168 (1998)

[52] Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for requirements
modeling and evolution of crossorganizational business processes. Transactions on
Software Engineering and Methodology (submitted, 2008)

[53] Rommes, E., America, P.: A scenario-based method for software product line
architecting. In: Käkölä, T., Dueñas, J.C. (eds.) Software Product Lines - Research
Issues in Engineering and Management, Berlin, pp. 3–52 (2006)

[54] Kau, S.A.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

[55] Su, N., Mylopoulos, J.: Evolving organizational information systems with tropos.
In: Conference on Advanced Information Systems Engineering (2006)

[56] Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)
[57] Dennett, D.C.: Darwin’s Dangerous Idea: Evolution and the Meanings of Life.

Simon & Schuster, New York (1995)
[58] Feather, M.S.: Rapid application of lightweight formal methods for consistency

analysis. IEEE Trans. Softw. Eng. 24(11), 948–959 (1998)

214 N.A. Ernst, J. Mylopoulos, and Y. Wang

[59] Robinson, W.N.: A requirements monitoring framework for enterprise systems.
Requirements Engineering Journal 11, 17–41 (2006)

[60] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

[61] McIlraith, S.: Explanatory diagnosis: Conjecturing actions to explain observations.
In: International Conference on Principles of Knowledge Representation and Rea-
soning (KR 1998), Trento, Italy, June 1998, pp. 167–179 (1998)

[62] Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-functional re-
quirements: A process-oriented approach. IEEE Transactions on Software Engi-
neering 18(6), 483–497 (1992)

[63] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002)

[64] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Journal of ACM 5, 394–397 (1962)

[65] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient sat solver. In: Design Automation Conference, Las Vegas, pp.
530–535 (June 2001)

[66] Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. In: Conference
on Design, Automation and Test in Europe (DATE), Paris, pp. 142–149 (March
2002)

[67] Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University (2004)

[68] Le Berre, D.: A satisfiability library for java (2007), http://www.sat4j.org/
[69] Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),

57–95 (1987)
[70] De Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses and systems.

Artificial Intelligence 56(2-3), 197–222 (1992)
[71] Castello, R.: Squirrel mail (2007), http://www.squirrelmail.org/
[72] Bjork, R.: An example of object-oriented design: an atm simulation (2007),

http://www.cs.gordon.edu/courses/cs211/ATMExample/index.html/

http://www.sat4j.org/
http://www.squirrelmail.org/

State-of-the-Art Report | version 4.0 | page 9 / 10

APPENDIX B – Security Requirements
Engineering for Evolving Software Systems:
A Survey

 1

Security Requirements Engineering for

Evolving Software Systems: a Survey

Abstract

Long-lived software systems often undergo numerous evolutions over an extended period of time.

Continuous evolution of these systems is inevitable as they need to continue to satisfy changing

business needs, new regulations and standards, and introduction of novel technologies in their

operating environment. Evolution of systems may involve changes that add, remove, or modify

features; or that migrate the system from one operating platform to another. These changes may result

in requirements that were satisfied in a previous release of an application not being satisfied in its

updated version. When evolutionary changes violate security requirements, a system may be left

vulnerable to attacks. In this paper we review current approaches to security requirements engineering

and conclude that they lack explicit support for managing the effects of software evolution. We then

suggest that a cross fertilisation of the areas of software evolution and security engineering would

address the problem of maintaining compliance to security requirements of software systems as they

evolve. We conclude the paper with a research agenda that highlights research issues that may need to

be addressed.

1. Introduction

Software evolution refers to the process of continually updating software systems in response to

changes in their operating environment and their requirements [90, 91]. These changes are often driven

by business needs, regulations, and standards that a software application is required to continue to

satisfy or adapt to [18, 84]. The changes to a software system may involve adding new features,

removing, modifying existing features [20, 78], redesigning the system for migration to a new

platform, or integration with other applications. Such changes may result in requirements that were

satisfied in a previous release of an application being violated in its updated version [45, 46].

 Security requirements engineering deals with the protection of assets from potential threats that may

lead to harm [52]. This paper observes that current approaches to security requirements engineering

have limited capability for preserving security properties that may be violated as a result of software

evolution. In supporting this argument we review the state-of-the-art in both literatures of software

evolution and security engineering, noting research challenges.

In illustrating the need for security requirements engineering approaches to support software evolution,

we consider how the introduction of a government regulation which states that only employees with

valid work permits are allowed to work may affect a standalone payroll system. One way to enforce

this regulation could be to introduce a feature that allows a central immigration control system to

access employee database records in the payroll system. Such a change, however, may require

migrating the payroll system to a platform that supports public network access (such as the Internet)

where it can communicate with remote applications. Allowing the immigration control application

access to the payroll implies that immigration officers now have access to private employee data which

were only available with the consent from the individual employees previously. Such evolution of the

payroll system has violated the confidentiality requirements of employees.

The example illustrates the need for security requirements engineering to incorporate requirements

evolution. We suggest that one way to address the problem of violation of security requirements as

result of evolution is a cross fertilisation of approaches to managing software evolution with security

requirements engineering. We hope that the cross fertilisation leads to an ideal approach to security

requirements engineering for evolving systems.

However, there are a number of challenges that will have to be addressed in order to make such cross

fertilisation a reality. The theme of these challenges is how to design software systems so that they are

both secure and evolvable. Current research in software evolution does not explicitly address security

issues and approaches to security requirements engineering do not provide systematic means to

 2

addressing software evolution concerns. Hence addressing the challenge of secure software evolution

will, inevitably, involve identifying promising approaches in both research fields and then finding some

way of integrating them. We anticipate that such cross fertilisation is non-trivial as it has to strike a

balance between security and evolution of software systems. Meeting these challenges will involve

inventing a process for security requirements analysis in long-lived systems and a methodology for

evolutionary requirements.

The challenge of achieving security requirements engineering for evolving software systems is made

harder by the fact that achieving software systems that both evolvable and secure can be conflicting

goals [111]. One of the key characteristics of software evolution is that in response to new

requirements, new features may be added to existing systems. This mandates composition of the

existing feature set with new features. However, feature composition is non-monotonic [146]; that is,

properties that were true of an existing system before combination with a new feature, are not

guaranteed to hold after the addition of new functionality.

The context of our work security requirements engineering and for this reason in Section 2 we attempt

to define what software evolution might mean from a requirements engineering perspective. We do

this by framing evolution research into a requirements engineering framework. In Section 3 we review

the state of the art on approaches to understanding and managing requirements evolution. Section 4

reviews approaches to eliciting and analysing security requirements and Section 5 presents a

comparative evaluation of the extent to which security requirements engineering approaches support

software evolution. The main objective of this survey is to identify research challenges that need to be

addressed and to present a research agenda in order to make security requirements engineering for

evolving systems possible. Section 6 discusses these challenges and where possible identifies

promising approaches that could be leveraged to address them, from both software evolution and

security requirements engineering perspectives. We present a conclusion in Section 7.

2. Software Evolution from a Requirements Engineering Perspective

Software evolution refers to the process of developing a software system initially and continually

updating it due to change in its stakeholder needs and its operating environment [89-91]. In this section

we discuss basic notions of the concept of software evolution (in section 2.1) and examine what

software evolution means from a requirements engineering perspective. Our discussion is based on

Zave and Jackson’s entailment relation [155] and we briefly describe this in Subsection 2.2. The

entailment relation structures software development problems into three main elements: requirements,

specification, and context. Subsections 2.3, 2.4, and 2.5 reviews literature that supports the notions of

software evolution as change in context, specification, and context, respectively. Subsection 2.6

concludes the section with a discussion of the implications of a requirements engineering perspective

on software evolution.

2.1 Basic Concepts of Software Evolution

Lehman [91], one of the pioneers of software evolution research, identified several trends in software

systems that seemed define intrinsically the nature of software systems in that they are independent of

system stakeholders [24]. This included the observation that with time software systems tend to

increase in size and complexity and a result of this increase their maintenance and adaptation becomes

more challenging. Although, it is true that software systems increase in size and complexity with time,

the view that this is somehow independent of stakeholder intentions is somehow controversial. This is

because an increase in software size could be viewed as a reflection of an expansion to the set of

stakeholder requirements which may in turn mean an increase in complexity. An empirical study

conducted by Barry et al. [8] concluded that some of Lehman’s hypotheses (called laws of software

evolution [88, 91]) on how software system evolve were invalid. . This could be attributed to the fact

that these hypotheses are founded on empirical studies of evolution in monolithic systems.

Lehman’s theories and laws on software evolution are generic. In this section we evaluate these generic

concepts of software evolution from a requirements engineering perspective. More specifically, we

examine what software evolution means in terms of Jackson and Zave’s entailment relation [155]

which describes software in terms of requirements, specification, and context. In the evaluation we

review the literature on software evolution and attempt to classify it according to whether it views

 3

software evolution as change in requirements, specification, or context. In doing so we hope to clarify

what software evolution means in requirements engineering.

2.2 Jackson and Zave’s Entailment Relation

The entailment relation relates three sets of descriptions: requirements (R), domain assumptions (W),

and specifications (S). It states that a specification satisfies a requirement given that some assumptions

about the behaviour of the context hold (formally, S, W |- R, where “|-“ denotes entailment). A

requirement describes a condition or capability that must be met or possessed by a system, in other

words, its purpose. Requirements are optative descriptions in that they described how the world would

be once the envisioned system is in place. For an electronic stability programme (ESP) feature in a car

this could be: ‘avoid vehicle skidding when brakes are applied’.

Domain assumptions describe facts about the behaviour of the environment where a system will be

deployed. In this paper we use the term context to refer to the environment described in domain

assumptions. In contrast to requirements, domain descriptions are indicative in that they describe

objective truth about the context. In the ESP example this could be: ‘applying brakes continuously

cause tires to lock’, ‘tires are mounted on the vehicle’s chassis’, and ‘locked tires lead to vehicle

skidding’.

Specifications then describe how the system should behave in order to satisfy the conditions described

in R, given that the assumptions described in W hold. The specification for the ESP could be: “if tire

lock occurs during braking, apply and release braking pressure at short discrete periodic intervals’.

2.3 Evolution as Change in Context

The operating environment or context of an application plays an important role in its evolution as it is

one of the major drivers of evolution. This is especially true for embedded systems [23]. Examples of

contextual changes include government regulations [18] (as illustrated by the payroll example in

section 1), business process models [63, 137], platforms [43], anomalies observed in the operation of

an application resulting from incompleteness of requirements and hardware failures or limitations

which were not considered initially [100] and software bugs [148], and inconsistencies between

requirements [33, 112, 128, 144].

The design of a software system makes assumptions about the environment in which it will operate [31,

43]. We illustrate this by citing examples from the literature. For example, the migration of a system

that was originally designed to run on a Desktop PC to a mobile device has to take into account the

limitation of resources in the new platform. The characteristics of the new mobile device platform

forces new stringent requirements on the applications use of resources. Another source of change is

inconsistencies that arise as features designed independently are composed [127]. Such inconsistencies

arise due to the invalidation of assumption that each feature made about the behaviour of the context.

For example in a smart home a security feature may require a window to be closed at night while a

climate control feature may require the same window to be opened to maintain a cool temperature in

the house [81]. Note that the conflict arises because of the two features sharing the same resource and

hence is manifested on the context [111]. Inconsistencies between features can lead to system evolution

as their resolution may require changing the requirements of each of the features involved in the

conflict. In the example of conflicting security and climate control example, a new requirement may be

introduced that states priority between the two features and determines which feature should be given

control of the window in the event that a conflict occurs.

We have illustrated how changes in context may lead to software evolution and shown that such

contextual changes are translated into new requirements that an application has to satisfy in order to

remain relevant and effective in its environment [84]. Therefore evolutionary changes in context may

eventually be translated into new requirements and hence ‘evolution as change in context’ results in

requirements evolution. It worth noting that an application does not only evolve to satisfy new

requirements imposed by changes in context but may also evolve to take advantage of new features

available in the context. For example, over the years Microsoft Word has had new functionality

introduced due to availability of novel features as the Windows operating system evolved [62].

 4

2.4 Evolution as Change in Specifications

Research in software evolution has traditionally focussed on changes in source code [7, 44, 104, 124,

156] and software architecture [23, 31, 85, 126] as prime variables of system evolution. This has led to

techniques such as program refactoring [28, 82, 135] and architectural configuration management

systems [126]. In this paper we consider software architectures and code as solutions that are designed

to satisfy requirements of an application. Hence we classify them as specifications.

While changes in context may lead to new requirements or to changes in existing requirements, in

contrast, evolution of specifications is driven by changes in requirements [45] and as such does not

always lead to evolution in requirements. A prime illustration of this point is code refactoring – where

the structure of program code may be changed without changing business logic. On the other hand, a

change in a requirement often results in a change in business logic [32, 127, 157].

Configuration management systems have been successfully applied to managing evolution at the

source code level. Contrary, applying configuration management concepts to the evolution of software

architectures leads to many problems as noted by Roshandel et al. [126]. In addressing this problem

Roshandel et al. proposed an approach that combines configuration management and architectural

concepts. Although the approach has been validated through its application to a number of projects,

there is no evidence that its conceptual basis can be generalised to the evolution of other software

artefacts. For example it is not known whether the combination of requirements analysis approaches

with configuration management concepts can shed some light on the evolution of requirements.

Roshandel et al. idea approach could be further enhanced integrating it with Chung and Sibramanian’s

[23] approach is based on the ideas that architectural evolution can be achieved by making software

architectures themselves evolvable.

2.5 Evolution as Change in Requirements

In recent years, researchers in software evolution have turned their attention to changes in stakeholder

needs (expressed as requirements) as one of the drivers of software evolution [29, 58, 131, 157].

Several approaches have been proposed for supporting requirements evolution.

Zowgi and Offen [157] proposed modelling and reasoning about the evolution of requirements using

meta level logic for formally capturing intuitive aspects of managing changes to requirements models.

The approach involves encoding requirements models as theories and reasoning about changes is

achieved by mapping changes between requirements models. A significant limitation of this approach

is the overhead of encoding requirements models in logic.

Russo et al. [127] proposed an approach to restructuring requirements to facilitate inconsistency

detection and change management. The approach was later extended by Garcez et al [29] to combines

abductive reasoning and inductive learning for evolving requirements specifications. The aim of

Garcez et al.’s approach is to preserve goals and requirements during evolution and it is based on the

idea of analysis and revision. During analysis, a specification is checked whether it satisfies a given

requirement using the concepts of model checking [21, 36, 94, 151]. If the current specification does

not satisfy the requirements, diagnosis information is generated which describes on how the

specification should be modified in order to satisfy the requirement. During revision the specification is

changed so that it satisfies the requirement.

The main feature of the analysis-revision approach is that evolutionary changes are allowed to happen

first and their impact on satisfaction of requirements is verified as the next step. This characteristic may

not be desirable if the evolutionary changes violate requirements in a manner that causes irreversible

damage. The efficiency of the analysis-revision cycle is also heavily dependent on choice of good

training examples. A related issue is that the approach does make a provision for validating the

automatically generated diagnosis against real-world system properties.

The evolution of requirements expressed in natural language is challenging as it makes it difficult to

precisely capture requirements changes. Fabrinni et al.’s [32] approach to controlling requirements

evolution uses formal concept analysis to enable a systematic and precise verification of consistency

among different stages of natural language requirements evolution. Software evolution may also

introduce inconsistencies between requirements. Ghose’s [45] framework formal approach is aimed at

 5

addressing the problem of requirements inconsistencies resulting from evolution. Similar to Garcez et

al. [29], Ghose’s approach is based on formal default reasoning and belief revision, and is supported by

automated tools [46].

This approach has interesting features for addressing requirements evolution in the context of security

requirements engineering as it offers a basis for reasoning about the impact of change on the

consistency between requirements. However, it is more general and not specific to addressing security

issues. Nevertheless, its combination with an analysis and revision approach (such as that of Garcez et

al.’s) can be useful as a basic building block for an approach to integrating requirements evolution in

security engineering.

A framework proposed by Lam and Loomes [84] suggests that one approach to the requirements

evolution problem is to have two models: a meta model and a process model. A meta-model captures a

set of requirements evolution concepts such as change, impact, and risk. A process model provides a

framework for handling the emergence of new or changing requirements. While this framework seems

a useful abstraction for approaches to requirements evolution the role of the meta-models is not well

motivated. Only capturing the concepts of requirements evolution is not sufficient. It may be more

useful if the meta-models provide methods and tools for analysing and eliciting change, determining

the impact of the change and its associated risk. These meta activities can be performed through

existing change impact analysis approaches [1, 15, 58, 124]. Lemoine and Foisseau [92] also proposed

the use of UML meta models for recording the artefacts of the produced as a result of evolution in high

assurance systems. Their Meta models do not only capture changes but can also be translated into

verification rules that can be used for checking properties of an evolving system such as compatibility

between multiple releases. Another technique proposed for validating requirements models during

evolution is through simulation [131].

2.6 Implications for a Requirements Engineering Perspective on Software Evolution

In this section we have discussed software evolution from a requirements engineering perspective. The

objective of our discussion has been to examine what software evolution means in requirements

engineering. Our discussion has focussed on software evolution in light of Jackson and Zave’s

entailment relation. Through the discussion we have observed that software systems evolve with

changing user needs and in their environment. Changes in the context of a system may lead to new

requirements or modification of existing requirements.

One the other hand, evolution in specifications does not always result in a corresponding evolution in

requirements. This is due to the notion that requirements state stakeholder needs or the problems to be

solved, while specifications describe the behaviour of software solutions that could satisfy the

requirements. As a result the abstract problem stated as a requirement may remain the same even

though its solutions may get progressively refined due to changes in context such as introduction of

novel technologies.

We envisage that the observations from our discussion may have important implications for research in

software evolution. The main implication concerns approaches to change impact analysis. For example

the observation that changing requirements may lead to changing specification could lead to a

framework for understanding the impact of changes and traceability of the changes through artefacts in

both requirements and specifications.

Figure 1. Software Evolution through Entailment Relation

f
e

b

d

Requirements Evolution

Specification Evolution a

c

Context Evolution

 6

Similarly, such a change impact analysis framework could also be useful for analysing what impact

changes in context may have on requirements and specifications. The change impact framework can be

validated by doing more research on what the interaction is between the changes in the three elements

of the entailment relation as illustrated in Figure 1. The arrows labelled a and b represents how changes

in requirements impact context and how context evolution impact requirements evolution, respectively.

Similarly, the arrows labelled c and d represent the impact of requirements evolution on specification

evolution and impact of specification evolution on requirements, respectively. Arrow e represent the

impact of changes in specification on context, meanwhile arrow f represents the impact of changes in

context on specifications.. In the next section we review approaches to understanding and managing

software evolution.

3. Approaches to Understanding and Managing Software Evolution

Approaches to the study of software evolution can broadly be classified into two categories:

explanatory and management [25]. Explanatory approaches take a scientific view and are concerned

with understanding causes, processes, and effects of software evolution. For example, these approaches

study evolution histories of an application in order to understand how the system has changed in

response to changes in organisational goals over time [4, 79, 85, 105]. In contrast management

approaches take an engineering perspective and are concerned with the development of better methods

and tools that can be used for managing the effects of software evolution. We review explanatory and

process improvement approaches in sections 3.1 and 3.2, respectively.

3.1 Explanatory Approaches

In this section we review exploratory approaches and classify them into two categories based on the

type of data they use. The first category use historical data such as changes in source code over a

period of time and the second category attempts to understand software evolution by using software

trails. We also look at some tools that have been designed to support exploratory approaches.

Using Historical Data to Study Software Evolution: Anton and Potts [4, 5] advocate for the study of
the functions offered by a system over its lifetime as a basis for understanding or predicting

characteristics of the particular system or similar systems. In realising this idea they proposed an

approach, called functional palaeontology, to studying the evolution of user-visible features

independent of architecture and design intent. The approach is similar to other approaches that study

evolution histories [8, 44, 49, 83, 119, 120]. Their approach was motivated by the observation that

research in evolution focussed on code-based analysis. They applied the approach to the analysis of

evolution in telecommunications features over a 50 year period.

In relation to the entailment relation described in section 2, functional palaeontology studies software

evolution in terms of requirements, in contrast to specifications and design. Functional palaeontology

has two components: functional morphology and functional evolution. Functional Morphology refers

to the profile or snapshot of the requirements of an application at a given time. Meanwhile functional

evolution refers to the patterns of change in the requirements over time. Functional palaeontology was

also applied to the study of feature evolution in a word processor [60].

Based on Anton and Potts idea of functional palaeontology [4, 5], Girba and Ducasse [49] proposed

Hlsmo – a metamodel in which functional evolution history is modelled as an explicit entity. Hlsmo

was motivated by the lack of an explicit meta-model for software evolution analysis. Gall et al. [39],

Rysselberghe and Demeyer [129], Wu et al. [149] proposed visualisation approaches for understanding

software release histories. Although useful, their approaches analyse evolution at the source code level.

Using source code analysis to understand evolution is necessary but not sufficient in understanding

evolution at the requirements level.

Using Software Trails to Study Evolution: While a majority of explanatory approaches use source

code change history for understanding software evolution [51], there are other methods which have

been proposed that use a different kind of data. German [44] proposed a method to recovering and

analysing the evolution of a software system using software trails. Software trails refers to information

behind by contributors to the development process of a software product such as software releases,

documentation, version control logs, and websites.

 7

German’s approach takes the software trails as input and reconstructs the evolution of an application.

Fischer and Gall [35] proposed an approach to analysing feature evolution in software system. The

main idea of their approach is to examine hidden dependencies between structurally unrelated features,

which over time become coupled. The authors claim that such hidden feature dependencies must be

identified as they may be a clear indication of architectural erosion. Architectural erosion refers to any

detrimental deviation, with time, of a system’s architecture from its original design conception [114].

Tool Support of Explanatory Approaches: A number of tools have been developed to support

research in understanding how systems evolve [57]. Hassan and Holt [57] proposed using evolutionary

code extractors as tools to help in empirical source code evolution research. Evolutionary code

extractors are limited to understanding source code evolution – they cannot be used for understanding

other software design artefacts such as specifications and designs. Scalability is also a major challenge

in these tools as they have to be able to analyse large and complex code repositories.

3.2 Management Approaches

According to Zave [153] and Chung et al. [23] , from a software engineering perspective software

evolution is a naturally occurring phenomena. It happens regardless of the actions of designers or

requirements analysts and thus can only be managed rather than be controlled. Based on this notion,

Zave distinguished research in managing software evolution in terms of prescriptions for evolving

systems rather than for evolvable systems. There is an important distinction between evolving and

evolvable systems. The term evolving system refers to the notion that evolution of software systems is

a natural process [23, 24, 157]. One the other hand, the natural evolution of a software application may

lead to side effects such as architectural erosion and increase in maintenance effort. A common

approach to minimising such negative effects is to manage the evolution of a system by designing it in

such a way that it is evolvable. We classify management approaches into the following categories:

feature engineering and software architectures, continuous architectural evaluation, minimising and

accommodating change, change impact analysis, incremental model transformation.

Feature Engineering and Component Architectures: Zave’s prescriptions for making software

systems evolvable are feature engineering and component architectures. Feature engineering involves

describing all features as if they were independent, understanding all potential feature interaction,

deciding on which interactions are desirable and which are not, and adjusting features and composition

operators so that features interact only in desirable ways [125, 140, 141, 152]. Component architecture

supports feature engineering by providing structural bases on which new functions can be added freely

by adding component programs [16, 17, 22, 26, 41, 66, 142].

The main objective of both feature engineering and component architectures is encouraging modular

software development. Modularisation seems to be a dominant concept to the management of software

evolution and has appeared in different forms such as code clusters [7, 50], feature views [51],

components [148] and modules [156]. Based on the observation that managing evolution in a large and

complex software is challenging, Glorie et al. [50] proposed an approach for splitting a large software

repository into smaller repositories. The assumption is that smaller software repositories ease future

software evolution.

In re-modularising a repository their approach identifies conceptual commonalities using formal

concept analysis and clustering techniques. In validation experiments conducted by the authors, the

approach failed as the results of a modularisation were not sensible to domain experts, owing to lack of

domain knowledge input into the modularisation process. Although the approach worked for smaller

code repositories, it failed to scale-up for larger and more complex source code repositories.

Pena et al. [118] proposed a novel view to software evolution. They view an evolutionary system as

being a software product line. The core architecture is the unchanging part of the system and each

version of the system may be viewed as a product from the product line. Each product is then described

as the core architecture with some additions. However, the assumption that core architecture remains

the same in the entire life of an application may not always be true.

Continuous Architectural Evaluation: Del Rosso [31] proposed continuous architectural evaluation as

an approach to managing evolution. The approach is based on the premise that software development is

 8

a process of continuous modelling and refinement. Over time the system architecture ages and weakens

the system’s ability to incorporate new features.

The objective of continuous architecture evaluation is to ensure that the architecture continues to

satisfy its requirements. In principle, this approach is similar to Garcez et al. [29] approach of

combining abductive reasoning and inductive learning to evolve requirements specifications. While

Del Rosso’s approach focuses on architecture, Garcez et al.’s approach is more generic and hence

applicable to the evolution of different aspects of software.

Minimising and Accommodating Change: The inherent complexity of software systems increases

their susceptibility to fragility due to change induced by unpredictable variations in user needs and

technology advances. In addressing this problem Ravichandar et al. [123] proposed a capabilities-based

approach to constructing complex software systems in such a way that they are tolerant to change.

Capabilities are change-tolerant functional abstractions that are foundational to the composition of

system functionality derived from user needs [122]. Capabilities are based on the notion that the basic

human need for a software system remains the same even though its solution may progressively

become more and more refined over time as novel technologies become available.

For example, consider the basic problem of enabling people living in different parts of the world to

communication. In ancient time, the initial solution to the problem was to use smoke signalling as a

way of relaying information or sending messengers. Then came fixed line telephony and with the

introduction of cellular phones came the now popular Short Message Service (SMS). Nowadays

instead of sending a messenger, we send an email or SMS. In essence capabilities capture the basic

problem to be solved by a software system.

Their idea of capabilities is similar to that of goals that are more tolerant to change compared to low-

level requirements. Both approaches are meant to minimize and accommodate change. However, there

some differences though. Goal-oriented approaches are top-down as goals are decomposed and refined

into requirements that can be implemented [143, 144]. On the other hand, Ravichandar et al’s

capabilities-based approach [122, 123] is bottom-up as capabilities are derived from requirements.

Hence a capabilities-based approach may be used to infer goals from requirements in a similar manner

as Van Lamsweed and Willemet’s approach to inferring declarative requirements from operational

scenarios [145].

Change Impact Analysis: Analysing and understanding the impact of change is one of the problems at

the forefront of software evolution research [97, 137]. Soffer’s [137] scope analysis approach

determines the extent to which changes to one business process affects other business processes.

Understand the effects of changes at the level of business processes is useful as such changes are

mirrored by evolution of the software systems that support the business processes.

Although Soffer’s approach gives requirements analysts an idea of the scope of change, it does not

offer a practical method of tracking the impact of changes to the software systems that support the

business process. In addressing the change tracking problem Lin et al. [97] proposed capturing

requirements changes as a series of atomic changes in specifications and using algorithms to relate

changes in requirements to corresponding changes in specifications. A combination of the two

approaches has the potential to lead to an approach both for understanding the scope of changes and a

way of tracking them as a system evolve. Change impact analysis is a critical component of

understanding and managing software evolution. This is evident in the research activities addressing

this problem [1, 15, 58, 124].

Incremental Model Transformation: Automated model transformation plays an important role in

model-driven system engineering in order to query, derive and manipulate large industrial models. For

instance, meta-modeling-based development architectures (including MDA) highly rely on

transformations within and between different models and languages. The contribution of model

transformation (MT) languages and tools in the overall success of model-driven system development

has been reported in many surveys and papers during the recent years [14, 27, 42]. Approaches to

model transformation and various solutions addressing the encountered challenges are continuously

being explored.

 9

Tool integration based on model transformations is one of the most challenging tasks with high

practical relevance. In tool integration, a complex relationship needs to be established and maintained

between models conforming to different domains and tools. Similar problems arise in a wide range of

circumstances; synchronization involving requirement and design models is an example. The aim of

model synchronization is to keep a model of a source language and a model of a target language

consistently synchronized while the underlying source model (and sometimes the target also) is

evolving. Model synchronization is frequently captured by transformation rules [11]. When the

transformation is executed, trace signatures are also generated to establish logical correspondence

between source and target models.

Traditionally, model transformation tools support the batch execution of transformation rules, which

means that input is always processed “as a whole”, and output is always regenerated completely.

However, in case of large, complex, and continuously evolving models, batch transformations may not

be feasible. To address the issue of model evolution, incremental model transformation: (i) update

existing target models based on changes in the source models [121], and (ii) minimize the parts of the

source model that need to be reexamined by a transformation when the source model is changed [12].

In the terminology of [27], these aspects are called referred to as target and source incrementality,

respectively.

3.3 Summary of Approaches to Software Evolution Management

The approaches discussed in this section focus on understanding and managing software evolution in

long-lived systems. Tables 3.1 and 3.2 present summaries of the approaches we have reviewed to

understanding and managing evolution, respectively. Worth noting is that a majority of these

approaches seem to consider software evolution as change in source code. In table 3.2 the last column

represents the level at which each evolution management approach manage evolutionary changes. This

can be at the level of requirements (R), specifications (S), or contexts (W).

Table 3.1. Summary of Approaches to Understanding Software Evolution
Explanatory
Approach

Classification

Type of Data Used Main Characteristics Examples Approaches

Empirical Studies Meta
Models

Visualisation Source Code Change

History

Source Code Source code history is used to

identify trends in system

changes over time. Anton and Potts [4-

6] , Barry et al. [8],

Smith et al. [136]

Girba and

Ducasse

[49],

Gall et al. [39],

Bohner [15], Wu

et al. [149]

Software Trails software releases,

system user manuals,

version control logs,

project websites, Emails.

Uses artefacts generated in

support of a software

development project, such as

emails, to understand source

and history of changes.

German [44], Kitchenham et al. [80], Kagdi et al. [76].

Table 3.2. Summary of Approaches to Managing Software Evolution

Level at Which
Change is Managed

Management
Approach

Classification

Main Characteristics Evolution Management
Approaches

R S W

Zave [152, 153] √ √ √
Turner et al. [141] √

Feature Engineering Modularity is used as means to promote ease of

evolution and maintenance.

Ricci [125]. √
Bond et al. [16] √

Kang et al. [77] √ √

Lee et al. [87] √

Oreizy et al. [115] √

Turner [142] √ √

Component

Architectures

Propose that software architectures should be

design such that they ease of addition and

removal of software modules

Zave et al. [154] √ √ √

Del Rosso [31] √ Continuous

Architectural

Evaluation

The ability of software architecture to satisfy

requirements is continuously verified.
Garcez et al. [29]. √ √

Minimising &

Accommodating

Change

Propose methods and techniques that reduce

fragility of software designs as a system

evolves.

Ravichandar et al. [122, 123] √

Soffer [137], √ √
Lin et al. [97] √

Ahmad et al. [1] √ √

Bohner [15] √

Hassine et al. [58] √ √

Change Impact

Analysis

Analyse the impact that a change would have

on a system design.

Ren et al. [124]. √

 10

While is true that changes to a software system are eventually implemented in source code, this limited

view of software evolution does not explicitly consider the notion that changes reflected in code

actually origination from requirements. Changes at the source code level are at a level too low to

enable the understanding of how changes in goals of an organisation are reflected in the source code.

Therefore considering software evolution only at the source code level is insufficient as it does not

capture high-level changes such as changes in requirements. Studying evolution at the requirements

level could be complementary to the source code level research as it can potentially allow for

systematic traceability of how changes at the requirements level are propagated to source code. Most

importantly, current approaches to software evolution do not take into account the impact of evolution

of security concerns. Kagdi et al. [76] provides a more comprehensive survey and taxonomy of

approaches for mining software repositories in the context of software evolution. In the next section we

review approaches to security requirements engineering.

4. Security Requirements Engineering

Security is an important characteristic of software systems and it is increasingly considered as a

fundamental part of the software development lifecycle. A first step towards this idea is the proposal

by Mouratidis et al. [107, 109] that security engineering should be an integral part of software

engineering. This is based on the notion that an ad hoc integration of security into a software system

that has already been developed has a negative effect on its maintainability and security.

In this section we review approaches to security requirements elicitation and analysis. We classify

these approaches according to the constructs that they are founded on, namely: goals-based, model-

based, problem-based, and process-oriented approaches. Our classification is partly based on previous

surveys by Tondel et al. [138], Villarroel et al [147], and Mouratidis and Giorgini [107] and partly by

our own understanding of the literature in this area.

4.1 Goal-Based Approaches

Goal-oriented approaches to security engineering focus on identifying threats to satisfaction of goals as

the basis for identifying system vulnerabilities. In comparison to low-level requirements, the high-level

abstraction of goals implies that they are more stable than low-level requirements. This makes goals

less likely to change compared to low-level requirements. However, a limitation resulting from this

benefit is that goals may be insufficient for analysing low level security concerns. In this section we

review four goal-based approaches: KAOS [143], an extension of KAOS to reasoning about

confidentiality requirements [30], Secure Tropos [48, 108, 110], and Secure i* [98].

KAOS: van Lamsweede [143] proposed an approach to modelling, specifying, and analysing security

requirements. The approach extends an earlier framework on eliciting goals and identifying potential

obstacles to satisfying goals [144] to security engineering. This is achieved by addressing malicious

obstacles which could be setup by attackers to sabotage the satisfaction of security goals.

The security obstacles are called anti-goals and are similar to the idea misuse cases [134]. The anti-

goals are then refined and elaborated through attack trees until leaf nodes which represent software

vulnerabilities are identified. In a comparative study reported in Opdahl and Sindre [113], attack trees

were found to be more effective at identifying security threats than misuses cases. In order to protect a

system for the identified potential threats that could take advantage of the vulnerabilities, new security

requirements are then elicited whose implementation is a countermeasure to potential threats.

Building on KAOS De Landtsheer and van Lamsweerde [86] proposed an approach to formally

specifying and reasoning about confidentiality requirements in the early stages of software

development. Confidentiality is one of key security requirements for information systems and it entails

ensuring that information is accessible only to those authorised to access [67]. De Landtsheer and van

Lamsweerde’s approach makes it possible for requirements analysts to check requirements models for

violation of confidentiality properties. In the case that violation of confidentiality properties is detected,

a temporal sequences of state transitions is given that explains how confidential information could be

disclosed.

 11

The approach requires an analyst to specify all necessary confidentiality requirements. However, it is

not always feasible to exhaustively eliciting all confidentiality requirements. This could be tackled by

incorporating the approach into some form of analysis-revision cycle, such as Garcez et al. [29], that

would allow for the continuous evolution of confidentiality requirements. Although the approach offers

promising results for elicitation and analysis of confidentiality requirements its focus on confidentiality

of state variables is limiting. Confidentiality of agent behaviour and what information can be inferred

from such behaviour is another important aspect that the approach needs to take into account as a

complement to the confidentiality of state variables. In addressing this limitation that approach may

need to incorporate approaches to reasoning about the behaviour of contexts [52, 64] and how that

behaviour contributes to satisfying or violating confidentiality requirements.

De Landtsheer and van Lamsweerde view of confidentiality is limited. Other works on elicitation and

analysis of confidentiality requirements have proposed detailed classifications of confidentiality

properties, albeit, in specific domains. For partitions of kernels in embedded software systems,

Heitmeyer et al. [59] proposed at least four confidentiality properties: No-Exfiltration, No-Infiltration,

Temporal Separation, and Separation of Control. The No-Exfiltration property states that data

processing in a partition cannot influence data store outside that partition while the No-Infiltration

property states that data processed in one partition is not influenced by data outside that partition.

The Temporal Separation property ensures that no confidential data stored in a partition in one

configuration of the partition can remain in any memory area of that same partition in a later

configuration. This property is similar to De Landtsheer and van Lamsweerde [86] view of

confidentiality which states that an agent knows some data if it is stored in its memory. The Separation

of Control property states that data processing between partitions is exclusive, that is, when data

processing is in progress in one partition, there should no data processing in other partitions. For

shared systems Jacob [67] proposed similar confidentiality properties, namely: non-interference,

restriction of information flow, lack of strong flow, separability, and non-deducibility.

Another issue worth exploring is whether the conceptual basis of De Landtsheer and van

Lamsweerde’s approach can be extended for reasoning about other types of security requirements such

as authenticity, availability, and non-repudiation at requirements engineering time.

Secure Tropos: Tropos [48, 108, 110] is a software development methodology, tailored from the i*

modelling framework, which describes the system and its organisational environment. Models in

Tropos are based on three basic concepts: actor, intention (goal, plan, resource), and dependency. An

actor is an entity that has intentions within a system or organisation to be served by the system. A goal

represents and actor’s aim or purpose and a plan represents a means by which a goal maybe satisfied. A

resource is a physical or informational entity that may be as used by the actions in a plan to satisfy a

goal. When an actor depends on another to satisfy its goal, the two actors are said to have a dependency

relationship. The Tropos software development process identifies four phases that to be followed in the

development of software systems, namely: early requirements, late requirements, architectural design,

and detailed design. Each successive phase refines the high-level description from the previous phase

to a lower level towards implementation. The concepts and software development phases of Tropos

have two limitations: (1) they fail to adequately capture security requirements and (2) they fail to

provide concepts and processes for modelling trust relationships between actors.

In addressing the above limitations, Secure Tropos extends Tropos with the ability to model security

concerns throughout the identified software development phases. This is achieved by explicit

modelling of security constraints, secure entities trust of permission, and delegation of permission. A

security constraint is a restriction related to maintaining security properties such as confidentiality and

integrity. Security entities represent goals, tasks, or resources in an application. Secure trust of

permission represents that a trust relation between two actors involves the introduction of a security

constraint that must be satisfied for the trust relation to be considered valid. Similarly, secure

delegation of permission involves the introduction of a security constraint that must be satisfied either

for the delegating actor, or delegatee, or both for the delegation to be valid.

Although Secure Tropos provides a systematic methodology for eliciting and analysing security

requirements, it does not provide means for propagating changes between the different models. For

example, if there is a change in a trust of permission model there is no systematic way of relaying such

 12

changes to a delegation of permission model, security constraint model, or security entities model. A

clear interaction relationship between the models would provide a systematic way of propagating

changes between the different models and hence support maintaining security properties as

requirements evolve.

Secure i*: Liu et al. [98] proposed an approach to analysing security and privacy requirements based

on the agent-oriented requirements modelling language i*. The main assumption in this approach is

that security issues in a software application are a manifestation the relationships between the system’s

actors. Based on this assumption, the approach elicits and analyses security requirements through

studying the relationships between system stakeholders, potential attackers, and agents acting either on

behalf of attackers or stakeholders.

The approach consists of techniques for analysing attackers, dependency vulnerability,

countermeasures, and access control. Attacker analysis identifies potential attackers and their possible

malicious intents while dependency vulnerability analysis elicits vulnerabilities of an application based

on relationship among stakeholders. Countermeasure analysis identifies measures that may be taken to

prevent potential attacks and vulnerabilities from being realised. Finally, access control analysis

establishes links between security requirements models and security implementation models by using

i* models to refine proposed solutions and generate system designs that meet the security requirements.

Trujillo et al. [139] proposed an approach for eliciting and developing security requirements for secure

data warehouses which adapts the i* framework so that it can be used under model driven architecture

and process modelling approaches.

The Secure i* approach is composed of useful abstractions of basic concepts of security such as

identification of malicious actors and developing appropriate countermeasures. However, there are

some limitations inherent in this approach. Firstly, while it is plausible that security issues manifested

in a software application are a reflection of the dynamic behaviour of actors and their relationships in

the social setting of an application, there is no guarantee that all potential classes of attackers can be

identified. The implication of this is that the countermeasures taken are likely to be incomplete.

Secondly, the identification of vulnerabilities through dependencies between stakeholders is not

foolproof because not all system vulnerabilities are due to relationships between stakeholders. Some

security vulnerabilities may result from the addition of new features which may comprise the integrity

of an application by violating security requirements maintained by current features. As an illustration

consider the following example of conflicts between features in an automobile:

Consider a car which has an alarm system (security feature) and a crash protection system with
air bags (safety feature). The alarm system enforces security of the car occupants and their
valuables. When activated it ensures that the doors and windows are locked; and monitors the
state of the doors; and reports any burglary activity by activating the siren. Meanwhile, the safety
feature ensures that in case of a crash, there is minimal loss of life. It achieves this by unlocking
all doors in the event that an impact occurs on the front bumper.

Let us consider a scenario where these features could interact. Assume the car is stationery at a
traffic intersection with all doors locked by the Security feature. If a thief hits the front bumper
with a big hammer, the Safety feature will unlock the doors allowing the thief to gain entry into the
car.

This feature interaction may not be obvious to detect until a scenario such as the one above occurs and

illustrates a situation in which an attacker takes advantage of the vulnerability resulting from evolution

of an application by adding new functionality. A possible implication of this example could be that

vulnerability analysis should not only consider relationships among actors but should also scenario-

based misuse cases that may violate security requirements.

4.2 Model-Based Approaches

Model-Based approaches are based on the notion that models help requirements analysts in

understanding complex software problems and identifying potential solutions through abstraction [34].

For example, models have been successfully for abstracting source code into class diagrams in reverse

engineering. Such abstractions make it easier to understand the behaviour of a software system and

how it might be improved. In this section we review two model-based approaches (UMLsec and

 13

SecureUML) in security engineering. While there may be other model-based approaches aimed at

addressing security concerns in the literature, our focus on these two is purely on a representational

basis.

UMLsec [70]: This approach is an extension of UML which allows an application developer to embed

security-related functionality into a system design and perform security analysis on a model of the

system the system to verify that it satisfies particular security requirements. Security requirements are

expressed as constraints on the behaviour of the system and the system design may be specified either

in a UML specification or annotated in source code. Automated theorem proving or model checking is

used to establish whether security requirements hold in the design. If the design violates security

requirements, a Prolog-based tool is used to generate a scenario (in the form of attack sequences) of

how security requirements may be violated by the design and countermeasure are taken to remove the

vulnerability. UMLsec has been validated through its application to systems in mobile communications

[73], automotive [13], and banking [69].

In essence, UMLsec assumes that requirements have already been elicited and there exists some system

design to satisfy them. Its objective is to establish whether the system design satisfies security

properties. The design is then progressively refined to ensure that it satisfies security requirements.

However, reasoning about security requirements in model-based approaches relies on accuracy of

system design models. The assumption that design models accurately capture system behaviour may

not always hold and incompleteness in a model may leave vulnerabilities that are outside the scope of

the model undetected.

For example, if a UML model used in the verification, obtained by reverse engineering source code, is

not a true representation of the behaviour of the source code then it is inevitable that the results of

verifying the design may not be accurate. In the case that verification suggests that the design does not

satisfy security requirements it may not be possible to tell whether this is due to inaccurate translation

to the design or the original source code. Of course, this may be seen as a concern that is outside the

scope of model-based security engineering, but there is a need to ensure that the verified models are an

accurate representation of reality. Some approaches have been proposed to verifying UMLsec models

with system behaviour. These include using run-time verification [75], static formal verification [71],

model-based testing [74], and security policy enforcement [61].

SecureUML: Lodderstedt et al. [99] present a modelling language, based on UML, called SecureUML.

SecureUML is focused on modelling access control policies and how these (policies) can be integrated

into a model-driven software development process. It uses role-based access control (RBAC) as a

metamodel for specifying and enforcing security. Additionally, the language provides support for

specifying authorisation constraints. The combination of the graphical capability of UML, access

control properties of RBAC, and authorisation constraints makes it possible to base access decision on

dynamically changing data such as time.

Similar to UMLsec, SecureUML focuses on the design phase of software development. For

consistency, it is important to consider security using the same concepts and notations during the whole

development process [108]. Unlike most approaches to security requirements analysis SecureUML

does not offer any analysis of scenarios eliciting potential attacks. Its focus on authorisation constraints

is insufficient as it does take into account potential vulnerabilities that could violate the constraints.

Moreover, the approach does not provide for a systemic way of verifying the validity of the constraints.

4.3 Problem-Oriented Approaches

Problem oriented approaches [54, 55, 65], bring informal and formal aspects of software development

together in a single theoretical framework for software engineering design – presenting development as

the representation and step-wise transformation of software problems. This theoretical framework

allows for: (1) the identification and clarification of system requirements; (2) the understanding and

structuring of the problem world; (3) the structuring and specification of a machine that can ensure

satisfaction of the requirements in the problem world; and (4) the construction of adequacy arguments,

to convince both developers and other stakeholders that the system will provide what is needed. In this

section we review three problem-oriented approaches, namely: security requirements and trust

assumptions [52, 53], abuse frames [95, 96], and misuse cases [2, 3].

 14

Security Requirements and Trust Assumptions: Haley et al. [52] proposed an approach to eliciting,

specifying and analysing security requirements, which combines concepts from requirements

engineering and securing engineering. From a requirements engineering perspective the approach uses

the concept of functional goals which can be refined into functional requirements with relevant

constraints. From a security engineering perspective, it takes the idea that security is about protecting

assets from harm assets.

The approach consists of four components. The first component provides systematic statements of roles

and relationships of security goals, security requirements and their relationships with other system

requirements. The second describes threats and their potential interaction with the system. The third

component is a precise definition of security requirements based on the description of potential threats.

Finally, the fourth is a set of arguments which assists with validating whether the elicited security

requirements can be enforced, given the context of the system. The construction of satisfaction

arguments involves describing the system and its context in a problem diagram using Jackson’s

problem frames notation [64].

Abuse Frames: Lin et al. [95, 96] proposed abuse frames, an approach to analysing security problems

in order to determine security vulnerabilities. This approach is also based on Jackson’s problem frames

approach to structuring and analysing software development problems [64]. While problem frames are

aimed at analysing the requirements to be satisfied, in contrast, abuse frames are based on the notion of

an anti-requirement. An anti-requirement is the requirement of a malicious user that can subvert an

existing requirement (similar to the concept of an anti-goal [143]).

Abuse frames represent the notion of a security threat imposed by malicious users and a means for

bounding the scope of security problems in order to analyse security threats and derive security

requirements. Binding the scope of a security problem makes it possible to describe it more explicitly

and precisely. Such explicit and precise descriptions facilitate the identification and analysis of threats,

which in turn drive the elicitation and elaboration of security requirements.

Misuse Cases: Use cases document functional requirements of a system by exploring the scenarios in

which the system may be used [68]. Their focus on what the system should do limits their capability in

documenting security requirements, which often concentrate on what the system should not do [133].

Similar to abuse frames, misuse cases are a negative form of use cases and thus are use cases from the

point of view of an actor hostile to the system [2, 3]. They are used for documenting and analysing

scenarios in which a system may be attacked. Once the attack scenarios are identified, countermeasures

are then taken to remove the possibility of a successful attack.

Although misuses cases are not entirely problem-oriented as they represent aspect of both problems

and solutions, they have become popular as a means of representing security concerns in the early

stages of software development. However, they are limited by the fact that they are based only on

scenarios. Completeness of requirements analysed through scenarios is not guaranteed as other

scenarios by which the security of a system could be exploited may be left out.

4.4 Process-Oriented Approaches

Process-oriented approaches focus on the steps for analysing security requirements. The steps may

involve risk analysis for identifying security vulnerabilities and exploration of countermeasures for

addressing identified weaknesses. In this section we review two process-oriented approaches: the

SQUARE methodology and an aspect-oriented approach.

SQUARE [103]: The Security Quality Requirement Engineering (SQUARE) method is used for

eliciting, analysing, categorising, prioritising, and documenting security requirements for software

systems. The motivation of this method is to enable requirements analysts to identify security

requirements as part of the requirements engineering process rather than as an after thought. The major

stages of the method involve identifying security goals, performing risk analysis to identify potential

threat to security goals, and eliciting security requirements which should be satisfied in order for

security goals to be met.

The definition of security requirements in the SQUARE methodology considers requirements as being

at the system or software level. This definition does not consider the properties and behaviour of the

 15

context in which an application operates. According to Jackson [64], a more concise definition of

requirements should consider their context of operation as satisfaction of a requirement is expressed in

terms of the state changes in the context. The steps provide by the methodology are “waterfall model”

in nature, and this does not make a provision for iterations to revise security requirements and support

the evolution of a system. Nevertheless, the methodology provides concrete systematic steps for

eliciting and analysing security requirement risk-based approach.

Aspect-Orientation: In Georg et al. [40] an aspect-oriented approach to designing secure applications

is proposed. The main idea of the approach is modelling security mechanisms and attack models as

aspects and consists of four steps: risk analysis, misuse model generation, composed system misuse

model generation, and alternative solution analysis. Risk analysis involves analysing a system to

identify potential threats to assets and the threats are modelled as attack aspects. Misuse model

generation composes attack aspect with the base model of the application to create potential misuse

models. Composed system misuse model generation analyses the misuse models to evaluate the impact

of an attack. If the result of the evaluation is such that the impact of a potential attack is severe and

cannot be tolerated, then countermeasures are identified through alternative solution analysis.

There are several benefits claimed for this approach. First, it allows designers to analyse and

understand security mechanism and attack model in separately and in a modular form, thus making it

easier to maintain the models. Second, using aspect composition and analysis techniques, designers can

determine the effect of security mechanisms and attacks on other system functionality. Finally,

determining the effects of new security mechanisms and potential attacks becomes a question of

composing them with the existing application re-doing the aspect analysis. A similar approach is

described in Xu et al. [150].

4.5 Summary of Approaches to Security Engineering

We have reviewed the state of the art of approaches to security requirements engineering. The

approaches have been classified into goal-based, model-based, aspect-oriented, problem-based, and

agent-oriented. Table 4 presents a comparative summary of these approaches and brief summaries of

their main characteristics.

In Table 4, the conceptual classification column represents categories of security requirements

engineering approaches based on the conceptual or primary characteristics for each security

engineering approach. In this paper we have identified four categories, namely: goal-based, model-

based, problem-oriented, and process-based approaches. Each conceptual class has instances or

example approaches that fall in that category. These instances are listed in the security approach

column.

Table 4. Comparative Summary of Security Requirements Engineering

Security Analysis Conceptual
Classification

Security
Approach

Core
Representation

Security
Specific

Representation

Vulnerability
Identification
Technique

Counter measure

KAOS[143

]

Goals Anti-goals Identification of Attacker

Goals.

Elicitation of security

goals to counter anti-

goals.

De

Landtsheer

and van

Lamsweed

[30]

Goals Unauthorised

Agent, Attacker

Knowledge, and

Confidentiality

Requirements

Patterns.

Requirements models are

checked for violation of

confidentiality properties.

Elicitation of security

requirements to

minimise the violation

of confidentiality

properties.

Secure

Tropos

TROPOS (Task,

Actor, Resource,

Goal, Soft Goal,

Dependency)

Security

constraint, secure

entities, secure

trust, and secure

delegation

modelling

Identification of malicious

actor’s goals and plans, and

analysis of each actor’s

security constraints.

Revision of actor

diagram to ensure that

secure entities are

protected from

malicious actors

Goal-Based

Secure i* Actor, goal, soft

goal, task,

resource, and

belief.

Potential attacker,

dependency

vulnerability, and

trust modelling,

Attacker analysis

(identification of potential

system abusers and their

intents) and Dependency

Vulnerability Analysis (

identification of vulnerable

points in actor dependency

network)

i* models are used to

refine proposed solution

and generate system

designs.

 16

UMLsec

[72]

UML Stereotypes Theorem Proving, Model

Checking.

System designs are

revised to remove

vulnerability.

UML Model-
Based
Aspect-Oriented

SecureUM

L [99]

UML and RBAC

Security

Constraints

Modelling access control

policies.

Identification of

authorisation constraints

Haley et al.

[52]

Problem Frames Trust assumption,

assets domain,

threat domain,

warrants, grounds,

satisfaction

argument, and

rebuttal.

Elicitation of security goals

(based on possible harm to

assets), refinement of security

goals to security requirements,

and construction of satisfaction

arguments.

Removing rebuttal by

adding functionality to

permit the addition of

new grounds or warrants

to mitigate the

conditions that permit a

rebuttal.

Abuse

Frames [95]

Problem Frames Anti-

Requirements,

Malicious User,

Asset Under

Attack, Security

Requirement,

Protected Domain

Problem frames are used as a

means of security threat

analysis and identifying anti-

requirements. Security threats

are then expressed as abuse

frames.

Identification of abuse

frame concerns which

need to be addressed for

an attack to succeed.

Security requirement for

counteracting threats are

expression a problem

frame.

Problem-Based

Misuse

Cases [3]

Use Case Misuse Case

SQUARE

[103]

Goals and Risk Misuse Cases,

Attack Scenarios,

Attack Trees.

Risk assessment to misuse

case, attack scenarios, attack

scenarios, attack trees.

Elicitation of security

requirements from

potential risks.

Process-
Oriented

Georg et al.

[40]

Aspects and Risk Secure aspect Misuse Model Generation Alternative Solution

Analysis

The core representation column shows the basic notation that each security engineering approach uses

for expressing its basic concepts. For example the basic construct in goal-oriented approaches is the

goal notation. Security requirements have special characteristics which often make it necessary to

extend generic core representations with security specific notations that are tailored for capturing and

representing security concerns.

For each approach security-related concepts are presented in the security representation column. In

general approaches to security requirements engineering involve two main phases in their processes,

namely (1) identification of vulnerabilities of a system to security threats, their probability of

occurrence, and impact and (2) designing mitigation strategies to remove the possibility of threats

causing harm to assets. The security analysis column documents methods and techniques by which

each approach identifies system vulnerabilities and identify or design counter measures to potential

threats.

The next section evaluates the extent to which approaches to security requirements engineering support

software evolution.

5. Support for Software Evolution in Security Requirements Engineering Approaches

Security engineering and software evolution, although often conflicting, are intertwined in the sense

that a change in one may affect the other. For example a violation of security goals may result in new

security requirements as countermeasures which in turn lead to an evolution of system functionality.

Likewise, the inevitable evolution of a system may lead to the addition of new functionality which

violates security properties.

In this section we make a comparative evaluation of the main characteristics of the security

requirements engineering approaches we reviewed in section 4. Our evaluation is based on a

comparison criterion that examines support for software evolution in security engineering approaches.

In the introduction section, we suggested that one way for security approaches to address concerns of

evolution in long-lived systems is to integrate software evolution management approaches in security

engineering. How can this be achieved?

In order to address the question above, we need to know what exactly is missing in security

requirements engineering approaches that can be considered sufficient in order to address software

evolution concerns. To systematically elicit the limitations of security engineering approaches we did

an analytical comparative evaluation and we started by formulating a possible comparison criteria. The

purpose of the criterion was to evaluate to what extent do current approaches to security requirements

engineering support software evolution. In formulating the criterion we had to ask a more fundamental

question: what would it mean for a security engineering approach to support software evolution?

 17

Our discussion in section 2 centred on the notion that the core element of software evolution is change.

Thus, supporting the evolution of a long-lived system mainly concerns tailoring its architecture and life

cycle in such a way that it makes it easier to accommodate and manage changing requirements. Our

evaluation criterion consists of four dimension of software evolution which we consider important for

security engineering approaches. In section 5.1 we present these criteria and discuss the evaluation

results in section 5.2.

5.1 Evaluation Criteria

We identified four dimensions for evaluating support of software evolution in security requirements

engineering approaches. These are modularity, component architecture, change propagation, and

change impact analysis. We briefly explain these below.

Modularisation: This is one of the most fundamental software engineering design principle. The value

of software design modularity mainly lies in the ability to accommodate potential changes.

Modularization techniques, such as object-oriented design patterns, provide one way to make some part

of a system change independently of all other parts. Modularity enforces separation of concerns and

makes it possible to develop software components independently and assembly them later. Constructs

such as features, classes, objects, components, and aspects are all means to modularisation.

Encapsulation is a key factor in modularisation as it determines the ability of a system design to contain

changes within a single module. For software evolution modularisation is important because,

potentially, it makes it easier to change the functionality of a software system by making it possible to

add or remove components.

Component Architectures: Modularity alone is insufficient in supporting software evolution in long-

lived systems. It is necessary to have an infrastructure where the software modules can be added and

removed with ease [117]. Component architectures provide such infrastructure by offering mechanisms

for component interoperability and integration which make it possible to extend systems with third

party components and hence provide support for evolution.

Change Propagation: The feature driven development paradigm [116] organises the functionality of a

software system in terms of features which may have dependencies between each other. One feature A

is dependent on some other feature B if B provides some services that A requires for its correct

operation. This dependency implies that changes in feature B may affect feature A. For example a

method in a class in B is changed and that method is called by A, the method call in A has to change

accordingly – otherwise we have an inconsistent dependency. In order to correct such inconsistencies,

further changes have to be made until consistency is restored. A change propagation process keeps

track of these changes and help in guaranteeing that a change is correctly propagated and that no

inconsistent dependency is left unresolved.

Change Impact Analysis: This is similar concept to change propagation. While the change

propagation is concerned with recording assessing the ripple effect of changes, the objective of impact

analysis is to determine what would be affected by a change to a particular artefact [15, 58]. This

involves identifying the artefact to be changed and how other artefacts that depend on it (its dependent

relationship). Identifying, dependent relationship is a recursive process as artefacts that depend on the

selected artefact may also have their own dependents, and so on. The process of dependency

relationships analysis continues until all dependencies are identified, starting with the selected artefact

and finishing with artefacts where nothing else depends on it.

5.2 Evaluation results

Table 5 presents a comparative evaluation of the security requirements engineering approaches

discussed in section 4 using the evaluation criterion above. The evaluation of each approach is based on

analysing the characteristics of the core representation, security specific representation, vulnerability

identification technique, and countermeasure techniques to accommodating change. The aim is

establish the extent to which current approaches to security engineering support software evolution and

whether some of their aspects hinder support for change.

 18

We evaluate each approach by assigning an integer value in the range 0 to 3. At the lower end, the

value 0 implies that an approach offers little or no support for a particular aspect of software evolution.

On the higher end of the scale, the value 3 implies that an approach fully supports the given aspect of

evolution.

Table 5. Evaluation of Support for Software Evolution in Security Requirements Engineering
Approaches

Security Evolution Support
Conceptual
Classification

Security
Approach Modularity Component

Architectures
Change

Propagation
Change Impact

Analysis

KAOS[143] 2: The

decomposition of

a system into

goals supports

modularity.

0: There is no

explicit support for

component

architectures.

3: A goal model

shows the

relationship

between goals and

hence their

dependencies.

1: There is no explicit

support for change impact

analysis as the focuss is one

identifying threats to

existing goals (rather the

effect of adding new goals)

De Landtsheer

and van

Lamsweed [30]

1: Goals are used

as a construct for

modularity

0: There is no

explicit consideration

for component

infrastructures.

3: Dependencies

between goals are

modelled in a goal

model.

1: There is no explicit

support. Focussed on

identifying violation of

confidentiality by existing

goals.

Secure Tropos 1: Although

agents are used

for identifying

attackers, goals

are the main unit

of modularity.

0: Component

infrastructures are

not explicitly

supported.

1: It is possible to

analyse

dependency

relationships

between agents.

1: There is no explicit

support for analysing the

impact of adding new goals.

Goal-Based

Secure i* 1: same as for

SecureTropos.

0: There is no

explicit support for

component

architectures.

3: Achieved by

modelling

dependencies

between

stakeholders.

1: Although there is support

for analysing the security

impact of existing goals,

there is no explicit support

on how the impact of

adding new goals is

analysed.

UMLsec [72] 2: Support is

implicit as it is

dependent on the

OO nature of

UML design

models.

2: This is implicit in

UML, although the

approach does not

prescribe

architectures. It

verifies existing

designs.

2: Support is

implicit as it is

depended on the

language used for

the modelling

language.

3: Model-Checking and

Theorem proving

techniques are used to

verify the impact of change.

Model-Based

SecureUML [99]

2: There is

implicit support

from the

component nature

of UML.

2: This provided by

UML.

2: Same as for

UMLsec

1: There is no explicit

support, although new

functionality can be verified

against authorisation

constraints.

Haley et al. [52] 2: Modules are

represented as

problem

descriptions.

1: Focus is on

eliciting security

requirement rather

how problem can be

composed.

1: There is no

explicit modelling

for dependencies

between functions

3: Argument satisfaction is

used as a way of verifying

that a specification satisfies

a requirement in a given

context.

Abuse Frames

[96]

2: Modules are

represented as

problem

descriptions.

1: There is no

explicit support for

this. Depends on the

structure of the

system analysed.

1: There is no

explicit support

for change

propagation.

2: Although there is explicit

support, change impact

analysis can be achieved

problem analysis when new

security problems are

identified.

Problem-
Oriented

Misuse Cases [3] 2: Modules are

use cases.

1: There is no

explicit support for

component

architectures.

0: Focus is on

identifying

potential system

abuses than

interaction

between functions

2: This is implicit in the

approach as it possible to

identify misuse cases for

corresponding to use cases.

SQUARE [103] 0: There is no

support for

modularity. Focus

is on risk analysis.

0: The approach is

focussed on steps for

risk analysis

independent of the

underlying structure

of the systems

analysed.

3: Risk analysis

identifies

dependencies,

however, not

necessary for

change

propagation.

3: Although, the steps in the

approach are ‘water model’

like rather than iterative, the

approach can be used for

impact analysis.

Process-
Oriented

Georg et al. [40] 2: The aspect is

the construct for

modularity.

1: Aspect weaving

techniques provide a

way to compose

aspects.

3: Aspects

encapsulate cross-

cutting concerns,

hence show

dependency

between

components.

1: Focus is on

encapsulating security

concerns in aspects. There

is no explicit support for

change impact analysis.

 19

We noted in table 3.2 that none of the approaches to managing software evolution we have reviewed

consider security concerns. It is worth noting, in Table 5, that some approaches to security

requirements engineering approaches discussed seems to provide some limited support for software

evolution. More comprehensive support is necessary as software evolution is a survival characteristic

for long-lived systems.

As stated earlier, evolution often leads to violation of security requirements. Therefore there is need to

investigate how software evolution could be a part of security requirements engineering and vice versa.

In the next section we present a research agenda for security requirements for evolving systems.

6. Security Requirements Engineering for Evolving Systems: A Research Agenda

Based on our review of software evolution and security engineering, in this section we articulate open

researches issues and present a research agenda in security requirements engineering for evolving

systems. We frame the open research issues around challenges in both software evolution and security

requirements engineering, and where possible, highlight some promising ideas on how the issues

arising from the integration of evolution and security engineering may be addressed. Our discussion of

the challenges is based on previous works Mens et al. [106] and Mouratidis and Giorgini [107]. While

these works focussed on software evolution and security engineering, respectively, the theme of our

discussion is how to maintain satisfaction of security requirements while supporting continuous

evolution of software systems.

Understanding Change: As evolution in a software system is a manifestation of the changes in an

organisation, there is a need to understand and capture evolution not only at the level of a software

system but also at the organisational level. Current approaches to studying software evolution are

focussed more evolution at the system-level rather instead of organisation level.

There are several benefits to understanding change at organisation level. The most important is that

organisations often state their needs in terms of visions and goals. In contrast to low-level requirements

visions and goals are more stable in the face of change. Due to such stability is it therefore important

that long-lived systems evolution should be understood in terms visions and goals instead low-level

requirements evolution. An understanding of change could also lead to a theory of software evolution

which could explain whether systems evolve functionally in non-random and partly predictable ways.

Such theory could also make it feasible to integrate change as part of the software lifecycle. Support for

model evolution [106] is one of the key challenges in software evolution that could also benefit from a

high-level understanding of change.

Brier et al.’s [19] approach to capturing, analysing, and understanding how software systems adapt to

changing requirements in their organisational context. Although their approach is aimed at re-aligning

software systems to business goals and processes; it can be seen as a step towards understanding

change at organisation level. The approach includes a process of change analysis for evaluating

improvements resulting from change in an organisation and a notation for reasoning about change.

Designing Change Tolerant Software Systems: Changing user needs induce new requirements and

technological advances may require a change in the context of an application. Evolution of an

application is inevitable and software systems often break due to changes resulting from evolution.

There is need for an approach to designing software systems in such a way that they can tolerate

change, that is, they are evolvable and their evolution does not lead to failure.

Promising approaches to designing change tolerant systems include: Ravichandar et al.’s [123]

capabilities-based approach to designing change tolerant systems; Zave’s [153] feature-based and

component-centric architecture approach to evolving software systems; Zowghi [157] approach to

modelling and reasoning about requirements evolution; and Garcez et al. [29] to evolving

specifications. Another promising approach is described in Shin and Gomaa [132]. The approach

models the evolution of non-secure applications into secure applications in terms of the software

requirements model and software architecture model. Security requirements are captured separately

from functional requirements and it is claimed that this separation makes possible to achieve the

evolution from a non-secure application to a secure application with less impact on the application.

 20

Non-Monotonicity of Software Evolution: Achieving systems that are secure and evolvable is a hard

goal because software evolution and security are conflicting goals [111]. One of the key characteristics

of software evolution is that in response to new requirements, new features may be added to legacy

systems. This mandates composition of the existing feature set with new features. However, feature

composition is non-monotonic [146] due to the feature interactions problem [78]. A system is said to be

Non-monotonic if it does not guarantee that properties that held prior to addition of new functionality

will continue to hold after the functionality has been added [56].

Since software evolution involves the composition of existing features with new features, and feature

composition is non-monotonic, then software evolution is intrinsically a non-monotonic activity.

Therefore, one of the important challenges for security engineering for evolving systems is how to

balance between the inevitable need for supporting continuous software evolution and the goal of

designing systems which ensure that security requirements that held initially (and need to continue

holding) are not violated by the addition of new functionality. This challenge can be summarised as

follows: can continuous software evolution co-exist with stringent security requirements and how can

this be achieved through sound design principles, methods, languages, and tools? How can

vulnerabilities resulting from the addition of new features be minimized?

Garcez et al [29] approach of analysis and change (as described in section 2.4) holds some promise as it

makes it possible for systems to be evolved in such a manner that allows the satisfaction of desirable

requirements to be checked at the end of an evolution cycle. At its present state, this approach allows

for the violation of security properties and then evolving the specification to remove the violation. This

is not a desirable characteristic especially in cases where the effects of the violation of a security

requirement can not be reversed. An interesting challenge is how this approach (other similar

approaches) could be modified such that evolutionary changes are only permitted only if the

implication of any resulting violation to security requirements is minimal. This may involve taking into

account the physical context of operation. This could be achieved by combining a analysis and revision

approaches with problem-oriented approaches security requirements engineering (such as those

proposed by Haley et al. [52] and Salifu et al. [130]), and incorporating promising results from secure

software composition [9, 10, 37, 38, 101, 102].

Security for Evolving Context-Aware Software: Context-aware applications have to maintain

satisfaction of requirements despite changes in their operating conditions [130]. Designing context-

aware systems involves analysing possible variations in their context of operation and specifying

behaviours in advance that would enable the system to maintain satisfaction of its requirements despite

changes in context. Besides the repository of behaviours corresponding to different context, context-

aware systems are also equipped with mechanisms for monitoring their context and switch between

behaviours in response to contextual changes. Evolutionary changes in a context-ware application are

often driven by the introduction of a new context of operation that had not been considered initially.

This makes it necessary to specify new behaviours to enable the application to continue to operate in

the new context and a specification of variables to be monitored in the new context.

Research in context-ware systems is relatively new. As a result current approaches to managing

software evolution are focussed on systems that do not need to change their behaviour with changes in

context. We envisage that the adaptive and dynamic nature of context-ware applications brings to fore

additional concerns and challenges for both software evolution and security engineering. In software

evolution one of the important research issues is whether the approaches proposed for managing

evolution in none context-ware systems can be applied to context aware systems. There are at least two

perspectives from which software evolution in an adaptive environment can studied. One concern

involves evolution of system behaviour with changing context. The other relates to evolution in terms

of new behaviour introduced to an application due to new context that was not considered initially. It is

worth investigating the interaction between these perspectives of evolution and the security concerns

they may raise.

An even harder challenge of security and evolution in context-aware systems is online software

evolution [148], which is a kind of software evolution that updates running programs without

interruption of their execution. Evolution for such systems is dynamic and often has to be completed in

relatively short time limits. This timing constraint raises at least two concerns. (1) How can the

correctness of evolved software be verified? Current approaches to verification are based on model

checking and theorem proofing [21, 33, 47, 93]. Both of these verification techniques are resource

 21

intensive operations and often take long to complete. (2) If the event that the online evolution fails, can

the evolution be rolled back? What are the implications of such roll back on security properties?

7. Conclusion

Software systems evolve in response to changes in their operating environment and requirements. Such

evolution often violates security requirements. We have reviewed the state-of-the-art in security

engineering and concluded that current approaches to security engineering do not address the problem

of preserving security properties that may be violated as a result of software evolution.

This paper suggested that one approach to addressing this problem of preserving security properties is

to integrate approaches to managing software evolution in security engineering. We termed this as

security requirements engineering for evolving systems. We have identified and discussed open

research issues and challenges that may need to be addressed in order to achieve the goal of security

engineering for evolving software systems. In some cases we have discussed promising research

directions on how the identified open issues could be addressed.

References

1. Ahmad, A., H. Basson, and M. Bouneffa. Software evolution control towards a better identification of

change impact propagation. in 4th International Conference on Emerging Technologies. 2008.

2. Alexander, I. Initial industrial experience of misuse cases in trade-off analysis. in Proceedings of IEEE

Joint International Conference on Requirements Engineering. 2002.

3. Alexander, I., Misuse cases: use cases with hostile intent. IEEE Software, 2003. 20(1): p. 58-66.

4. Anton, A.I. and C. Potts, Functional Paleontology: The Evolution of User-Visible System Services.

IEEE Transactions on Software Engineering, 2003. 29(2): p. 151-166.

5. Antón, A.I. and C. Potts. Functional Paleontology: System Evolution as the User Sees It. in 23rd

International Conference on Software Engineering (ICSE'01). 2001.

6. Antón, A.I. and C. Potts. Requirements Engineering in the Long-Term: Fifty Years of Telephony

Feature Evolution. in International Workshop on Feedback and Evolution in Software and Business

Processes (FEAST 2000). 2000. London, UK, 10-12 July 2000.

7. Antonellis, P., D. Antoniou, Y. Kanellopoulos, C. Makris, E. Theodoridis, C. Tjortjis, and N. Tsirakis,

Clustering for Monitoring Software Systems Maintainability Evolution. Electronic Notes in Theoretical

Computer Science, 2009. 233: p. 43-57.

8. Barry, E.J., C.F. Kemerer, and S.A. Slaughter, How software process automation affects software

evolution: a longitudinal empirical analysis. Journal of Software Maintenance and Evolution:

Research and Practice, 2007. 19(1): p. 1-31.

9. Bartoletti, M., P. Degano, and G.L. Ferrari. Enforcing secure service composition. in 18th IEEE

Workshop Computer Security Foundations. 2005.

10. Bartoletti, M., P. Degano, G.L. Ferrari, and R. Zunino, Semantics-Based Design for Secure Web

Services. IEEE Transactions on Software Engineering, 2008. 34(1): p. 33-49.

11. Becker, S.M., T. Haase, and B. Westfechtel, Model-based a-posteriori integration of engineering tools

for incremental development processes. Software and Systems Modeling, 2005. 4(2): p. 123-140.

12. Bergmann, G., A. Okros, I. Rath, D. Varro, and G. Varro, Incremental pattern matching in the viatra

model transformation system, in Proceedings of the third international workshop on Graph and model

transformations. 2008, ACM: Leipzig, Germany. p. 25-32.

13. Best, B., J. Jurjens, and B. Nuseibeh. Model-Based Security Engineering of Distributed Information

Systems Using UMLsec. in 29th International Conference on Software Engineering. 2007.

14. Bezivin, J., On the Unification Power of Models. Software and Systems Modeling, 2005. 4(2): p. 171-

188.

15. Bohner, S.A. Software change impacts-an evolving perspective. in Proceedings of International

Conference on Software Maintenance. 2002.

16. Bond, G.W., E. Cheung, K.H. Purdy, P. Zave, and C. Ramming, An Open Architecture for Next-

Generation Telecommunication Services. ACM Transactions on Internet Technology (TOIT), 2004.

4(1): p. 83-123.

17. Bradbury, J.S., J.R. Cordy, J. Dingel, and M. Wermelinger, A survey of self-management in dynamic

software architecture specifications, in Proceedings of the 1st ACM SIGSOFT workshop on Self-

managed systems. 2004, ACM Press: Newport Beach, California. p. 28-33.

18. Breaux, T.D. and A.I. Anton, Analyzing Regulatory Rules for Privacy and Security Requirements.

IEEE Transactions on Software Engineering, 2008. 34(1): p. 5-20.

 22

19. Brier, J., L. Rapanotti, and J.G. Hall. Problem-based analysis of organisational change: a real-world

example. in Proceedings of the 2006 international workshop on Advances and applications of problem

frames. 2006. Shanghai, China: ACM.

20. Calder, M., M. Kolberg, E. Magill, and S. Reiff-Marganiec, Feature interaction: A critical review and

considered forecast. Computer Networks, 2003. 41(1): p. 115-141.

21. Calder, M. and A. Miller, Feature interaction detection by pairwise analysis of LTL properties: a case

study. Formal Methods in System Design, 2006. 28(3): p. 213-261.

22. Chakraborty, D., F. Perich, A. Joshi, T.W. Finin, and Y. Yesha. A Reactive Service Composition

Architecture for Pervasive Computing Environments. in Proceedings of the IFIP TC6/WG6.8 Working

Conference on Personal Wireless Communications. 2002: Kluwer, B.V. Deventer, The Netherlands,

The Netherlands.

23. Chung, L. and N. Subramanian, Architecture-based semantic evolution of embedded remotely

controlled systems. Journal of Software Maintenance and Evolution: Research and Practice, 2003.

15(3): p. 145-190.

24. Cook, S., R. Harrison, M.M. Lehman, and P. Wernick, Evolution in software systems: foundations of

the SPE classification scheme. Journal of Software Maintenance and Evolution: Research and Practice,

2006. 18(1): p. 1-35.

25. Cook, S., R. Harrison, M.M. Lehman, and P. Wernick, Evolution in software systems: foundations of

the SPE classification scheme. Journal of Software Maintenance and Evolution: Research and Practice,

2005. 18(1): p. 1-35.

26. Crnkovic, I. Component-based software engineering - new challenges in software development. in

Information Technology Interfaces, 2003. ITI 2003. Proceedings of the 25th International Conference

on. 2003.

27. Czarnecki, K. and S. Helsen, Feature-based survey of model transformation approaches. IBM Systems

Journal, 2006. 45(3): p. 621-645.

28. da Silva, B.C., E. Figueiredo, A. Garcia, and D. Nunes, Refactoring of Crosscutting Concerns with

Metaphor-Based Heuristics. Electronic Notes in Theoretical Computer Science, 2009. 233: p. 105-125.

29. d'Avila Garcez, A.S., A. Russo, B. Nuseibeh, and J. Kramer, Combining abductive reasoning and

inductive learning to evolve requirements specifications. IEE Proceedings Software, 2003. 150(1): p.

25-38.

30. de Landtsheer, R. and A. van Lamsweerde, Reasoning about confidentiality at requirements

engineering time, in Proceedings of the 10th European software engineering conference. 2005, ACM:

Lisbon, Portugal. p. 41-49.

31. Del Rosso, C., Continuous evolution through software architecture evaluation: a case study. Journal of

Software Maintenance and Evolution: Research and Practice, 2006. 18(5): p. 351-383.

32. Fabbrini, F., M. Fusani, S. Gnesi, and G. Lami. Controlling Requirements Evolution: a Formal

Concept Analysis-Based Approach. in International Conference on Software Engineering Advances.

2007.

33. Felty, A.P. and K.S. Namjoshi, Feature specification and automated conflict detection. ACM

Transactions on Software Engineering and Methodology (TOSEM), 2003. 12(1): p. 3 - 27.

34. Fernández-Medina, E., J. Jurjens, J. Trujillo, and S. Jajodia, Model-Driven Development for secure

information systems. Information and Software Technology, 2009. 51(5): p. 809-814.

35. Fischer, M. and H. Gall, Visualizing feature evolution of large-scale software based on problem and

modification report data. Journal of Software Maintenance and Evolution: Research and Practice,

2004. 16(6): p. 385-403.

36. Fisler, K. and S. Krishnamurthi. Modular verification of collaboration-based software designs. in

Proceedings of the 8th European software engineering conference held jointly with 9th ACM

SIGSOFT international symposium on Foundations of software engineering. 2001. Vienna, Austria.

37. Focardi, R. and R. Gorrieri, The Compositional Security Checker: a tool for the verification of

information flow security properties. IEEE Transactions on Software Engineering, 1997. 23(9): p. 550-

571.

38. Francesco, N.D. and G. Lettieri, Checking security properties by model checking. Software Testing,

Verification and Reliability, 2003. 13(3): p. 181-196.

39. Gall, H., M. Jazayeri, and C. Riva. Visualizing Software Release Histories: The Use of Color and

Third Dimension. in Proceedings of the IEEE International Conference on Software Maintenance.

1999: IEEE Computer Society Washington, DC, USA.

40. Georg, G., I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and S.H. Houmb, An aspect-oriented

methodology for designing secure applications. Information and Software Technology, 2009. 51(5): p.

846-864.

41. Georgas, J.C., A.v.d. Hoek, and R.N. Taylor, Architectural runtime configuration management in

support of dependable self-adaptive software, in Proceedings of the 2005 workshop on Architecting

dependable systems. 2005, ACM Press: St. Louis, Missouri. p. 1-6.

 23

42. Gerber, A., M. Lawley, K. Raymond, J. Steel, and A. Wood, Transformation: The Missing Link of

MDA, in Proceedings of the 1st International Conference on Graph Transformation. 2002, Springer-

Verlag: Barcelona. p. 90-105.

43. Gerdes, J., User Interface Migration of Microsoft Windows Applications. Journal of Software

Maintenance and Evolution: Research and Practice, 2009. 9999(9999): p. n/a.

44. German, D.M., Using software trails to reconstruct the evolution of software. Journal of Software

Maintenance and Evolution: Research and Practice, 2004. 16(6): p. 367-384.

45. Ghose, A.K. A formal basis for consistency, evolution and rationale management in requirements

engineering. in 11th IEEE International Conference on Tools with Artificial Intelligence. 1999.

46. Ghose, A.K. Formal tools for managing inconsistency and change in RE. in 10th International

Workshop on Software Specification and Design. 2000.

47. Giannakopoulou, D. and J. Magee, Fluent model checking for event-based systems, in Proceedings of

the 9th European Software Engineering Conference. 2003, ACM Press: Helsinki, Finland. p. 257-266.

48. Giorgini, P., F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security requirements through

ownership, permission and delegation. in Proceedings of 13th IEEE International Conference on

Requirements Engineering. 2005. Paris, France.

49. Gîrba, T. and S. Ducasse, Modeling history to analyze software evolution. Journal of Software

Maintenance and Evolution: Research and Practice, 2006. 18(3): p. 207-236.

50. Glorie, M., A. Zaidman, A.v. Deursen, and L. Hofland, Splitting a large software repository for easing

future software evolution - an industrial experience report. Journal of Software Maintenance and

Evolution: Research and Practice, 2009. 21(2): p. 113-141.

51. Greevy, O., S. Ducasse, and Tudor Gîrba, Analyzing software evolution through feature views. Journal

of Software Maintenance and Evolution: Research and Practice, 2006. 18(6): p. 425-456.

52. Haley, C.B., R. Laney, J.D. Moffett, and B. Nuseibeh, Security Requirements Engineering: A

Framework for Representation and Analysis. IEEE Transactions on Software Engineering, 2008.

34(1): p. 133-153.

53. Haley, C.B., R.C. Laney, J.D. Moffett, and B. Nuseibeh. The effect of trust assumptions on the

elaboration of security requirements. in 12th IEEE International Requirements Engineering

Conference. 2004.

54. Hall, J.G., L. Rapanotti, and M. Jackson. Problem Oriented Software Engineering: A design-theoretic

framework for software engineering. in 5th IEEE International Conference on Software Engineering

and Formal Methods. 2007.

55. Hall, J.G., L. Rapanotti, and M.A. Jackson, Problem Oriented Software Engineering: Solving the

Package Router Control Problem. IEEE Transactions on Software Engineering, 2008. 34(2): p. 226-

241.

56. Hall, R.J., Feature combination and interaction detection via foreground/background models. Journal

of Computer Networks, 2000. 32(4): p. 449-469.

57. Hassan, A.E. and R.C. Holt. Studying the evolution of software systems using evolutionary code

extractors. in Proceedings of 7th International Workshop on Principles of Software Evolution. 2004.

58. Hassine, J., J. Rilling, J. Hewitt, and R. Dssouli. Change impact analysis for requirement evolution

using use case maps. in 8th International Workshop on Principles of Software Evolution. 2005.

59. Heitmeyer, C.L., M.M. Archer, E.I. Leonard, and J.D. McLean, Applying Formal Methods to a

Certifiably Secure Software System. IEEE Transactions on Software Engineering, 2008. 34(1): p. 82-

98.

60. His, I. and C. Potts, Studying the Evolution and Enhancement of Software Features, in Proceedings of

the International Conference on Software Maintenance. 2000, IEEE Computer Society. p. 143.

61. Hohn, S. and J. Jurjens, Rubacon: automated support for model-based compliance engineering, in

Proceedings of the 30th international conference on Software engineering. 2008, ACM: Leipzig,

Germany. p. 875-878.

62. Hsi, I. and C. Potts. Studying the Evolution and Enhancement of Software Features. in Proceedings of

the 16th IEEE International Conference on Software Maintenance. 2000. San Jose, California, USA.

63. Ibrahim, N., W.M.N. Wan Kadir, and S. Deris. Comparative Evaluation of Change Propagation

Approaches towards Resilient Software Evolution. in 3rd International Conference on Software

Engineering Advances. 2008.

64. Jackson, M., Problem frames : analysing and structuring software development problems. ACM Press.

2001, Harlow: Addison-Wesley, 2001.

65. Jackson, M., Software Requirements and Specifications: A Lexicon of Practice, Principles and

Prejudices. 1995, London, United Kingdom: Addison-Wesley. 228.

66. Jackson, M. and P. Zave, Distributed Feature Composition: A Virtual Architecture for

Telecommunications Services. IEEE Transactions on Software Engineering, 1998. 24(10): p. 831-847.

67. Jacob, J., A uniform presentation of confidentiality properties. IEEE Transactions on Software

Engineering, 1991. 17(11): p. 1186-1194.

 24

68. Jacobson, I., Object Oriented Software Engineering: A Use Case Driven Approach. 1992: Addison-

Wesley Professional. 552.

69. Jurjens, J. Developing high-assurance secure systems with UML: a smartcard-based purchase

protocol. in Proceedings of 8th IEEE International Symposium on High Assurance Systems

Engineering. 2004.

70. Jurjens, J., Secure Systems Development with UML. 2004, Heidelberg, German: Springer-Verlag. 316.

71. Jurjens, J. Security Analysis of Crypto-based Java Programs using Automated Theorem Provers. in

21st IEEE/ACM International Conference on Automated Software Engineering. 2006.

72. Jurjens, J. UMLsec: Extending UML for Secure Systems Development. in Proceedings of the 5th

International Conference on The Unified Modeling Language. 2002: Springer-Verlag.

73. Jurjens, J., J. Schreck, and P. Bartmann, Model-based security analysis for mobile communications, in

Proceedings of the 30th international conference on Software engineering. 2008, ACM: Leipzig,

Germany. p. 683-692.

74. Jurjens, J. and G. Wimmel. Formally testing fail-safety of electronic purse protocols. in 16th Annual

International Conference on Automated Software Engineering. 2001.

75. Jurjens, J., Y. Yu, and A. Bauer. Tools for Traceable Security Verification. in Visions of Computer

Science - BCS International Academic Conference. 2008. Imperial College, London, UK: BCS.

76. Kagdi, H., M.L. Collard, and J.I. Maletic, A survey and taxonomy of approaches for mining software

repositories in the context of software evolution. Journal of Software Maintenance and Evolution:

Research and Practice, 2007. 19(2): p. 77-131.

77. Kang, K.C., S. Kim, J. Lee, and K. Lee, Feature-oriented engineering of PBX software for adaptability

and reuseability. Software: Practice and Experience, 1999. 29(10): p. 875 - 896.

78. Keck, D.O. and P.J. Kuehn, The Feature and Service Interaction Problem in Telecommunications

Systems: A Survey. IEEE Transactions on Software Engineering, 1998. 24(10): p. 779-796.

79. Kemerer, C.F. and S. Slaughter, An Empirical Approach to Studying Software Evolution. IEEE

Transactions on Software Engineering, 1999. 25(4): p. 493 - 509.

80. Kitchenham, B.A., G.H. Travassos, A.v. Mayrhauser, F. Niessink, N.F. Schneidewind, J. Singer, S.

Takada, R. Vehvilainen, and H. Yang, Towards an ontology of software maintenance. Journal of

Software Maintenance: Research and Practice, 1999. 11(6): p. 365-389.

81. Kolberg, M., E.H. Magill, and M. Wilson, Compatibility Issues between Services Supporting

Networked Appliances. IEEE Communications Magazine, 2003. 41(11): p. 136-147.

82. Kosker, Y., B. Turhan, and A. Bener, An expert system for determining candidate software classes for

refactoring. Expert Systems with Applications. In Press, Corrected Proof.

83. Kozlov, D., J. Koskinen, M. Sakkinen, and J. Markkula, Assessing maintainability change over

multiple software releases. Journal of Software Maintenance and Evolution: Research and Practice,

2008. 20(1): p. 31-58.

84. Lam, W. and M. Loomes. Requirements evolution in the midst of environmental change: a managed

approach. in 2nd Euromicro Conference on Software Maintenance and Reengineering. 1998.

85. LaMantia, M.J., Y. Cai, A. MacCormack, and J. Rusnak, Analyzing the Evolution of Large-Scale

Software Systems Using Design Structure Matrices and Design Rule Theory: Two Exploratory Cases,

in Proceedings of the Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA

2008). 2008, IEEE Computer Society. p. 83-92.

86. Landtsheer, R.D. and A.v. Lamsweerde, Reasoning about confidentiality at requirements engineering

time, in Proceedings of the 10th European software engineering conference. 2005, ACM: Lisbon,

Portugal. p. 41-49.

87. Lee, K., K.C. Kang, W. Chae, and B.W. Choi, Feature-based approach to object-oriented engineering

of applications for reuse. Software: Practice and Experience, 2000. 30(9): p. 1025-1046.

88. Lehman, M.M. Laws of Software Evolution Revisited. in Proceedings of the 5th European Workshop

on Software Process Technology. 1996.

89. Lehman, M.M., G. Kahen, and J.F. Ramil, Behavioural modelling of long-lived evolution processes -

 some issues and an example. Journal of Software Maintenance and Evolution: Research and Practice,

2002. 14(5): p. 335-351.

90. Lehman, M.M. and J.F. Ramil, Evolution in software and related areas, in Proceedings of the 4th

International Workshop on Principles of Software Evolution. 2001, ACM: Vienna, Austria. p. 1-16.

91. Lehman, M.M. and J.F. Ramil, Software evolution: background, theory, practice. Information

Processing Letters, 2003. 88(1-2): p. 33-44.

92. Lemoine, M. and J. Foisseau. Managing (requirements) evolutions of high assurance systems. in IEEE

Joint International Conference on Requirements Engineering. 2002.

93. Letier, E., J. Kramer, J. Magee, and S. Uchitel, Fluent temporal logic for discrete-time event-based

models. SIGSOFT Softw. Eng. Notes, 2005. 30(5): p. 70-79.

94. Li, H.C., S. Krishnamurthi, and K. Fisler. Interfaces for Modular Feature Verification. in Proceedings

of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02). 2002.

 25

95. Lin, L., B. Nuseibeh, D. Ince, and M. Jackson. Using abuse frames to bound the scope of security

problems. in Proceedings of 12th IEEE International Requirements Engineering Conference. 2004.

96. Lin, L., B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames for analysing

security requirements. in Proceedings of 11th IEEE International Requirements Engineering

Conference. 2003.

97. Lin, L., S.J. Prowell, and J.H. Poore, The impact of requirements changes on specifications and state

machines. Software: Practice and Experience, 2009. 39(6): p. 573-610.

98. Liu, L., E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social setting.

in 11th IEEE International Requirements Engineering Conference. 2003.

99. Lodderstedt, T., D. Basin, and J. Doser, SecureUML: A UML-Based Modeling Language for Model-

Driven Security, in «UML» 2002: The Unified Modeling Language. 2002. p. 426-441.

100. Lutz, R.R. and I.C. Mikulski, Operational anomalies as a cause of safety-critical requirements

evolution. Journal of Systems and Software, 2003. 65(2): p. 155-161.

101. Mantel, H. On the composition of secure systems. in IEEE Symposium on Security and Privacy. 2002.

102. Mantel, H. Preserving information flow properties under refinement. in IEEE Symposium on Security

and Privacy. 2001.

103. Mead, N.R. and T. Stehney, Security quality requirements engineering (SQUARE) methodology.

SIGSOFT Software Engineering Notes, 2005. 30(4): p. 1-7.

104. Mens, K., T. Mens, and M. Wermelinger, Supporting software evolution with intentional software

views, in Proceedings of the International Workshop on Principles of Software Evolution. 2002, ACM:

Orlando, Florida. p. 138-142.

105. Mens, T., J.F. Ramil, and M.W. Godfrey, Analyzing the Evolution of Large-Scale Software. Journal of

Software Maintenance and Evolution: Research and Practice, 2004. 16(6): p. 363 - 365.

106. Mens, T., M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri. Challenges in

software evolution. in 8th International Workshop on Principles of Software Evolution. 2005.

107. Mouratidis, H. and P. Giorgini, Integrating Security and Software Engineering: Advances and Future

Visions. 2006, London, United Kingdom: Idea Group Publishing. 288.

108. Mouratidis, H., P. Giorgini, and G. Manson, Modelling secure multiagent systems, in Proceedings of

the 2nd international joint conference on Autonomous agents and multiagent systems. 2003, ACM:

Melbourne, Australia. p. 859-866.

109. Mouratidis, H., P. Giorgini, and G. Manson, When security meets software engineering: a case of

modelling secure information systems. Information Systems, 2005. 30(8): p. 609-629.

110. Mouratidis, H., J. Jurjens, and J. Fox, Towards a Comprehensive Framework for Secure Systems

Development, in Advanced Information Systems Engineering. 2006. p. 48-62.

111. Nhlabatsi, A., R. Laney, and B. Nuseibeh, Feature Interaction: the Security Threat from within

Software Systems. Progress in Informatics, 2008(5): p. 75-89.

112. Nuseibeh, B., S. Easterbrook, and A. Russo, Leveraging Inconsistency in Software Development.

Computer, 2000. 33(4): p. 24-29.

113. Opdahl, A.L. and G. Sindre, Experimental comparison of attack trees and misuse cases for security

threat identification. Information and Software Technology, 2009. 51(5): p. 916-932.

114. O'Reilly, C., P. Morrow, and D. Bustard. Lightweight prevention of architectural erosion. in

Proceedings of 6th International Workshop on Principles of Software Evolution. 2003.

115. Oreizy, P., M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D.S.

Rosenblum, and A.L. Wolf, An Architecture-Based Approach to Self-Adaptive Software. IEEE

Intelligent Systems and Their Applications, 1999. 14(3): p. 54 - 62.

116. Palmer, S.R. and J.M. Felsing, A Practical Guide to Feature-Driven Development. 2002: Pearson

Education.

117. Parsons, D., A. Rashid, A. Telea, and A. Speck, An architectural pattern for designing component-

based application frameworks. Software: Practice and Experience, 2006. 36(2): p. 157-190.

118. Pena, J., M.G. Hinchey, M. Resinas, R. Sterritt, and J.L. Rash, Designing and managing evolving

systems using a MAS product line approach. Science of Computer Programming, 2007. 66(1): p. 71-

86.

119. Ramil, J.F. Laws of software evolution and their empirical support. in International Conference on

Software Maintenance. 2002.

120. Ramil, J.F. and N. Smith, Qualitative simulation of models of software evolution. Software Process:

Improvement and Practice, 2002. 7(3-4): p. 95-112.

121. Rath, I., G. Bergmann, A. Okros, and D. Varro, Live Model Transformations Driven by Incremental

Pattern Matching, in Proceedings of the 1st international conference on Theory and Practice of Model

Transformations. 2008, Springer-Verlag: Zurich, Switzerland. p. 107-121.

122. Ravichandar, R., J.D. Arthur, and S.A. Bohner. Capabilities Engineering: Constructing Change-

Tolerant Systems. in 40th Annual Hawaii International Conference on System Sciences. 2007.

 26

123. Ravichandar, R., J.D. Arthur, S.A. Bohner, and D.P. Tegarden, Improving change tolerance through

Capabilities-based design: an empirical analysis. Journal of Software Maintenance and Evolution:

Research and Practice, 2008. 20(2): p. 135-170.

124. Ren, X., O.C. Chesley, and B.G. Ryder, Identifying Failure Causes in Java Programs: An Application

of Change Impact Analysis. IEEE Transactions on Software Engineering, 2006. 32(9): p. 718-732.

125. Ricci, A., Agents and Coordination Artifacts for Feature Engineering, in Objects, Agents, Features, J.-

J.C.M. Mark D. Ryan, Hans-Dieter Ehrich, Editor. 2004, Springer-Verlag: Berlin Heidelberg. p. 209–

226.

126. Roshandel, R., A.V.D. Hoek, M. Mikic-Rakic, and N. Medvidovic, Mae - a system model and

environment for managing architectural evolution. ACM Transactions in Software Engineering

Methodology, 2004. 13(2): p. 240-276.

127. Russo, A., B. Nuseibeh, and J. Kramer, Restructuring requirements specifications. IEE Proceedings

Software, 1999. 146(1): p. 44-53.

128. Russo, A., B. Nuseibeh, and J. Kramer. Restructuring requirements Specifications for Managing

Inconsistency and Change: A Case Study. in Proc. of 3 rd International Conference on Requirements

Engineering (ICRE `98). 1998. Colorado Springs, USA.

129. Rysselberghe, F.V. and S. Demeyer. Studying Software Evolution Information by Visualizing the

Change History. in Proceedings of the 20th IEEE International Conference on Software Maintenance.

2004.

130. Salifu, M., Y. Yu, and B. Nuseibeh. Specifying Monitoring and Switching Problems in Context. in

Proceedings of the 15th IEEE International Conference in Requirements Engineering (RE '07). 2007.

New Delhi, India.

131. Seybold, C., S. Meier, and M. Glinz. Evolution of requirements models by simulation. in Procedings of

7th International Workshop on Principles of Software Evolution. 2004.

132. Shin, M.E. and H. Gomaa, Software requirements and architecture modeling for evolving non-secure

applications into secure applications. Science of Computer Programming, 2007. 66(1): p. 60-70.

133. Sindre, G. and A.L. Opdahl. Eliciting security requirements by misuse cases. in Proceedings of 37th

International Conference on Technology of Object-Oriented Languages and Systems. 2000.

134. Sindre, G. and A.L. Opdahl, Eliciting security requirements with misuse cases. Journal of

Requirements Engineering, 2005. 10(1): p. 34-44.

135. Smith, G. and T. McComb, Refactoring Real-time Specifications. Electronic Notes in Theoretical

Computer Science, 2008. 214: p. 359-380.

136. Smith, N., A. Capiluppi, and J.F. Ramil, A study of open source software evolution data using

qualitative simulation. Software Process: Improvement and Practice, 2005. 10(3): p. 287-300.

137. Soffer, P., Scope analysis: identifying the impact of changes in business process models. Software

Process: Improvement and Practice, 2005. 10(4): p. 393-402.

138. Tondel, I.A., M.G. Jaatun, and P.H. Meland, Security Requirements for the Rest of Us: A Survey. IEEE

Software, 2008. 25(1): p. 20-27.

139. Trujillo, J., E. Soler, E. Fernández-Medina, and M. Piattini, An engineering process for developing

Secure Data Warehouses. Information and Software Technology, 2009. 51(6): p. 1033-1051.

140. Turner, C.R., Feature Engineering of Software Systems, in Computer Science. 1999, University of

Colorado. p. 175.

141. Turner, C.R., A. Fuggetta, L. Lavazza, and A.L. Wolf, A Conceptual basis for feature engineering.

The Journal of Systems and Software, 1999. 49(1): p. 3-15.

142. Turner, K.J. An Architectural Foundation for Relating Features. in Proceedings of Feature

Interactions in Telecommunication Networks IV. 1997. Amsterdam: IOS Press.

143. van Lamsweerde, A. Elaborating security requirements by construction of intentional anti-models. in

26th International Conference on Software Engineering. 2004.

144. van Lamsweerde, A., R. Darimont, and E. Letier, Managing conflicts in goal-driven requirements

engineering. IEEE Transactions on Software Engineering, 1998. 24(11): p. 908-926.

145. van Lamsweerde, A. and L. Willemet, Inferring declarative requirements specifications from

operational scenarios. IEEE Transactions on Software Engineering, 1998. 24(12): p. 1089-1114.

146. Velthuijsen, H., Issues of non-monotonicity in feature interaction detection, in Feature Interactions in

Telecommunication Systems III, K.E. Cheng and T. Ohta, Editors. 1995, IOS Press: Amsterdam. p. 31-

42.

147. Villarroel, R., E. Fernández-Medina, and M. Piattini, Secure information systems development - a

survey and comparison. Computers & Security, 2005. 24(4): p. 308-321.

148. Wang, Q., J. Shen, X. Wang, and H. Mei, A component-based approach to online software evolution.

Journal of Software Maintenance and Evolution: Research and Practice, 2006. 18(3): p. 181-205.

149. Wu, J., R.C. Holt, and A.E. Hassan, Exploring Software Evolution Using Spectrographs. 11th Working

Conference on Reverse Engineering, 2004: p. 80-89.

150. Xu, D., V. Goel, and K. Nygard. An Aspect-Oriented Approach to Security Requirements Analysis. in

30th Annual International Computer Software and Applications Conference. 2006.

 27

151. Yokogawa, T., T. Tsuchiya, M. Nakamura, and T. Kikuno, Feature Interaction Detection by Bounded

Model Checking. IEICE Transactions on Information and Systems, 2003. E86-D(12): p. 2579-2587.

152. Zave, P., An experiment in feature engineering. Programming methodology: Monographs In Computer

Science, 2003: p. 353 - 377.

153. Zave, P. Requirements for Evolving Systems: A Telecommunications Perspective. in Proceedings of

5th IEEE International Symposium on Requirements Engineering (RE'01). 2001. Toronto, Canada:

IEEE Computer Society.

154. Zave, P., H.M. Goguen, and T.M. Smith, Component Coordination: A telecommunication case study.

Computer Networks: The International Journal of Computer and Telecommunications Networking,

2004. 45(5): p. 645-664.

155. Zave, P. and M. Jackson, Four dark corners of requirements engineering. ACM Transactions on

Software Engineering and Methodology, 1997. 6(1): p. 1-30.

156. Zenger, M., KERIS: evolving software with extensible modules. Journal of Software Maintenance and

Evolution: Research and Practice, 2005. 17(5): p. 333-362.

157. Zowghi, D. and R. Offen. A logical framework for modeling and reasoning about the evolution of

requirements. in 3rd IEEE International Symposium on Requirements Engineering. 1997.

State-of-the-Art Report | version 4.0 | page 10 / 10

APPENDIX C – Evolution in Access Control
Systems

Evolution in Access Control Systems: A State of

the Art Survey

Federica Paci and Fabio Massacci

Department of Information Engineering and Computer Science, University of Trento

Abstract. Access control is a key component of system security. Due to
the high dynamicity that characterize the new software systems, access
control models must be able to evolve with the systems they protect to
maintain an adequate level of security. This survey discusses what does it
mean evolution in access control and provides an overview of the access
control models that are able to support evolution.

1 Introduction

Access control is a key component in any security solution, in that it deter-
mines which subject can perform which action under which circumstances on
the protected resources.

A variety of access control models and policy languages have been devel-
oped over the years. They can be classified according to three main access con-
trol paradigms: Discretionary Access Control (DAC), Mandatory Access Control
(MAC), and Role Based Access Control (RBAC).

In the early days of the mainframe, when the biggest need was to prevent one
user from interfering with the work of others sharing the machine, MAC models
were widely adopted. Permissions to use a system resource, such as a file, was
linked to the users identity. Permissions were stored in an access matrix, that can
be modified only by a trusted party, the system administrator. As the number
of users grew, the burden on the administrator became untenable. Thus, DAC
models have emerged as a more suitable access control mechanisms. In DAC
models each object has an owner who exercises primary control over the object.
While DAC performed well for centralized monolithic systems, it turned not to
be suitable for distributed systems because of the complexity of managing the
access rights for individuals and machines. Role-based access control (RBAC)
proposed to reduce such administrative costs. In RBAC permissions are assigned
to roles, that identify a category of users, rather then to single users. The idea
is that there will be far fewer roles than either users or permissions.

Such systems where designed with an essentially static idea in mind: the users
and the resources change slowly and the management of changes is essentially a
problem of administration. Indeed, the classical Bell-LaPadula model for multi-
level security introduced the “tranquility principle” as a key property for security
theorems to hold [6].

Unfortunately, new software systems are undergoing continuing change and
rapid revolution to respond to the changes in the environment, user needs, de-
veloping concepts and advancing technologies [17].

So, the evolution of software systems requires access control systems that
include evolution as a first class citizen in order to preserve the security of such
systems.

With the exception of the early papers on the access control matric by Har-
rison, Ruzzo and Ullmann [11] (and the first works by Sandhu [22, 23]), the
problem of evolution of access control systems has received little attention by
the research community because was considered just a problem of administra-
tion. This survey provides an overview of how access control models deal with
evolution.

The survey is structured as follows. In the next section, we discuss what
evolution means in access control systems and which are the main causes of
evolution. Section 3 overviews the proposals that supports the representation
of change and policies change impact analysis. Section 4 presents access control
models that consider environmental factors in making access control decisions.
Section 5 discusses the only work about resiliency of an access control model.
Moreover, Section 6 concludes the survey and outlines some possible research
directions.

2 The Notion of Evolution in Access Control

The evolution of an access control model consists of changing the access control
policies and the constraints on the existing model. The possible type of changes
that can occur in an access control model consists of adding or removing a sub-
ject, adding or removing a resource to be protected, and in adding, revoking or
modifying access rights granted to subjects. These changes can be triggered by
several factors. Access control policies may change because of changes in the en-

vironment in which the access control model is deployed. For example, when the
system is attacked, or when a vulnerability is detected, the access rights granted
to users need to be changed to prevent malicious users or software applications
from accessing vulnerable resources, or vice-versa. When new regulations or laws
concerning security and privacy are introduced, access control policies must be
updated to comply with new regulations and laws. The access control policies
that regulate the access to a resource may also change with environmental factors
such as time or the location in which users make an access request. Changes of

the system requirements may also cause the modification of access control poli-
cies. Indeed, system requirements and access control policies are strictly related.
Requirements capture the functionalities of a system while access control policies
control end-users interactions with system resources that are usually described
by functional requirements.

Changes to the system design and implementation such as the addition of a
software component, or of a new resource, the installation or the update of new
application requires the specification of new access control policies to restrict
access to the new resources.

Thus, it is important that an access control model is able to evolve in response
to the variety of changes that can occur and undermine the security of a system.

An access control model should support the representation of the events that
cause the evolution of the model and the analysis of the impact of the change in
terms of the results of the evaluation of access requests with the respect to the
policies and of the authorization state that lead to a specific evaluation result.

Though evolution of access control models is inevitable to preserve systems’
security, how to manage the evolution of an access control model is still an
open problem. The proposals about access control models and evolution can be
classified in proposals that:

1. support the representation of change
2. support change impact analysis
3. evaluate the impact of changes in the environment on the applicability of

access control policies
4. analyze the resiliency of access control models to changes.

In the next sections, we present the main proposals about evolution of access
control models based on the above classification.

3 Evolution as Change in Policies

Analyzing what have caused a change in the access control policies of a system
and how this change affects the set of actions that are permitted or denied is
really important. In fact, changes in the policies may result in a decreased level
of protection.

Margrave [14] is a software suite for analyzing the impact of changes to role-
based access-control policies expressed in XACML [19]. Margrave includes a
verifier that analyzes policies written in the XACML language, translating them
into MTBDDs (multi-terminal binary decision diagrams). The vertexes of the
diagram model variables that represent the components subjects, actions, and
resources of an XACML policy. Each combination of boolean values over these
variables maps to one of three policy results (permit, deny, or not-applicable)
supported by XACML; the results are denoted by the terminals of the MTBDD.
To implement change analysis, Margrave introduces a different type of MTBDD
called change-analysis decision diagram or CMTBDD. A CMTBDD has sixteen
terminals, one for each ordered pair of results from the policies being compared
(such as permit-to-permit, deny-to-ec, permit-to-not-applicable, and so on). The
CMTBDD is generated from the MTBDDs of the two polices need to be com-
posed showing the changes of the two policies. Margrave provides a suite of oper-
ators for creating an manipulating a CMTBDD, such as restricting a CMTBDD
to a particular kind of change and determining which variable values can lead
to particular kinds of changes.

Pucella and Weissman [21] introduce a modal logic-based on propositional
dynamic logic to reason about the execution of scenarios during which the set
of access control policies change. The semantic of the logic is based on Kripke
structures, which are the formal models of the applications. Intuitively, a Kripke
structure encodes a transition system, along with the characteristics of each state

(i.e., which primitive propositions are true in each state). Transitions represent
the actions that can be permitted or denied. To analyze the consequences of
changing an access control policy, the authors model the properties that the
change should satisfy as a formula, and verifies that the formula is true with
respect to the Kripke structure capturing the states of the application and the
possible transitions, and the new set of access control policies.

Koch, Mancini, and Parisi-Persicce study the change impact problem [15].
They use graph transformations to represent the evolution, the integration, and
the transformation of security policies. A policy is formalized by four compo-
nents: a type graph, positive and negative constraints (a declarative way of de-
scribing what is wanted and what is forbidden) and a set of rules (an operational
way of describing what can be constructed). The specification formalism, is based
on the different possible semantics of graph transformation systems, described
in terms of category theory and well understood gluing constructions. They dis-
cuss how to preserve the coherence of a policy during its evolution. They assume
that the change over time of a policy is due to the addition/deletion of rules and
constraints. Although they present examples of how to represent changes using
graphs, they present no algorithms or tools, nor suggest methods for eliciting
policy change from graph differences.

Chaudhuri et al. [7] propose EON, a logic-programming language to model
and automatically analyze dynamic access control systems. The authors focus on
access control systems in which processes and objects are labeled with security
levels, and processes are prevented to access objects based on their labels. The
changes that the author consider and of which they analyze the impact are
the creation of new objects and processes, and the modification of objects and
security labels. Thus, EON language extends Datalog with dynamic operators for
creating and modifying simple objects and processes. The operational semantic
of an EON program, that is, a collection of clauses, is given as a (possible non
deterministic) transition system over a database, that is a collection of facts.
The analysis of the access control system is done evaluating a query on an EON
program and checking that the system does not reach an undesirable state.

Naldurg and Campbell [20] present an approach to dynamically changing
access rights in response to an attack to the system or when a vulnerability is
detected so that the safety property and trust assumptions are preserved. The
approach is based on representing the possible changes as a state machine with
the sets of subjects, objects and access rights as its state variables, and the tran-
sitions are all system actions that can change the state variables. State-changing
transitions may include the addition or removal of a subject, an object, or an
access right. To preserve the safety property and trust assumptions, transitions
are associated with guards that force users to present a proof of authorization,
in the form of credentials, attesting that they have the right to change the access
rights.

Barker et al. [1] present SBAC, a novel access control model based on the
notion of status. The key aspect of the SBAC model is the capability of au-
tonomously changing access control policies in response to events that involve

users actions. The assignment of users and access privileges on objects may
change dynamically as a consequence of the occurrence of events of relevance in
an environment being modeled or because of situational factors, such as the time
at which access to a resource is requested, the location of the agent requesting
access, CPU or network load measures, system status criteria (e.g., system under
attack), sales volumes, and trading patterns. These events are used, in conjunc-
tion with users action status, to determine a users status level and hence the
users authorizations. A users action status; this history enables changing access
policy requirements to be naturally accommodated. SBAC access control policies
and the history of events related to a user are represented as Identification-based
Logic Programs (IBLPs), that are an annotated form of logic programs. The ap-
proach is implemented as an autonomous agent that reasons about the events,
actions, and a history (of events and actions), which relates to a requester for
access to resources, in order to decide whether the requester is permitted the
access to a resource.

4 Evolution as Change in the Environment

The importance of taking environmental factors into account when making access
control decision has been recently outlined in several proposals [10, 9, 13, 2, 12,
24, 25, 8, 5, 26, 16, 4, 3]. Environmental factors such as time and location are
often denoted as context in these proposals. Considering environmental factors
allows to make access control policies enforcement dynamic. Changes in the
environment influence the applicability of access control policies, and trigger the
dynamic change of the policies.

Dougherty et al. [10] define a framework to represent access control policies,
their dynamic environment and the interactions between them. A policy inter-
acts with its dynamic environment by consulting facts in the environment and
potentially constraining certain actions in the environment. The interaction be-
tween a policy and its environment is modeled by a state machine. States are
labeled with a set environmental facts and the result of the evaluation of the
policy in that state, while transitions are labeled with events corresponding to
actions performed by users (such as access requests) and events occurring in the
environment. Such model is used to analyze the impact of the environment on
the evaluation of an access request against an access control policy.

Craven et al. [9] present an expressive logical framework for policy specifica-
tion and analysis. The framework separates the representation of policies from
the representation of the system that is protected by the policies. Policies are
represented as first-order logic rules while to model the system Event Calculus
is adopted. EC has been chosen because of its ability to represent concisely the
effect of actions on properties of the system. EC includes predicates to repre-
sent dynamic features of the system, system events not regulated by policies,
system events regulated by policies and time instants. The analysis is based on
the use of abductive, constraint logic programming (ACLP) systems, and the
Event Calculus (EC) to describe how events and actions occurring in the system

affect the system states, leading to circumstances in which a given policy rule is
applicable. The analysis returns a system trace, that is sequence of actions, that
have caused a change in system properties.

Jagadeesan et al. [13] propose a policy algebra for dynamic policies that is
a sub-language of Time Default Concurrent Constraint programming. The pro-
grams in their policy algebra are reactive, meaning that a program may interact
with its environment in a sequence of discrete time steps. With this algebra
it is possible to represent state changes triggered by environmental changes or
users access requests. State changes are modeled using labeled transition sys-
tems. Each state of the LTS is captured by a Datalog constraint program. An
LTL formula is interpreted over traces (sequences of states) where in each state
of the trace, a truth value is associated with each of the atoms appearing in the
formula. LTL has temporal operators in addition to the usual logical connectives
of propositional logic so that one can describe relationships between the values
of the atoms across time.

Becker et al. [2] propose SMP, a logic for specifying access control policies
whose evaluation causes a change in the authorization state. This logic is based
on Datalog, but extends it with predicates for state modification, called effects,
and a simple form of negation. The semantics of SMP is formalized by modeling it
as a fragment of Transaction Logic that is a general framework that incorporates
database updates and transactions into first order logic. An authorization state
is defined by a database which contains environmental facts that are relevant for
authorization, such as the actions a user performs or the role played by a user.
Facts may be inserted or removed from the database as the result of evaluating an
access request. The authors present an inference system for evaluating sequences
of user actions with respect to policies and check that the authorization state
reached satisfies certain constraints. Thus, they do not consider changes to the
policies but only changes in the environmental facts.

Hulsebosch et al. [12] propose a context-based access control model where
the access to a resource is granted or denied to a user based on context in-
formation. The introduction of the context allows to adapt security policies to
situational or contextual changes. They propose a system architecture to take
authorization decision based on context that consists of context owners (COs),
context brokers (CBs), context providers (CP), context-aware service providers
(CASPs), and access controllers (ACs). The COs collect and own the contextual
data or information, e.g. a user receives and possesses GPS-location information.
He or she decides how and by whom context data or information may be stored,
distributed and processed. The CPs check that context access control and usage
policies are in line with privacy and security requirements of the COs. The CPs
also take care of context management issues by providing categorization means
for context indexing, retrieval, querying, inferential and association purposes.
CBs provide service publishing mechanisms to CPs, and service discovery mech-
anisms to the CASPs. The CASPs provide services to users that are adapted to
specific user-service contexts, e.g. being on the train. The AC grants or denies
users to perform an operation on an object according to an access control policy.

First, the AC authenticates a user by verifying the contextual attributes pro-
vided by the user. Then, the AC binds the user with a set of permissions based
on those attributes.

Toahchoodee et al. [24] present Spatio-Temporal RBAC (STRBAC), which
extends traditional RBAC models with spatial and temporal constraints. In
STRBAC, users assignment to roles and permissions assignment to roles is based
on the location of a user and on a time interval. Also, the enforcement of sepa-
ration of duty constraints depends on location and time. Thus, the permissions
of a user change over time and depending on the user location. To analyze STR-
BAC and the system that it protects, the authors propose an approach based
on using UML and OCL language to model STRBAC components and the sys-
tem. The UML model is, then, translated into an Alloy 1 specification that can
be automatically analyzed using the Alloy Analyzer which has embedded SAT-
solvers. The results of the analysis indicate the level of protection provided by
the STRBAC model for the given system.

In [25], Toninelli et al. a semantic context-aware access control model. The
context includes information about the resources accessed, the actors and the
surrounding environment, and it is modeled in Web Ontology Language (OWL).
The policies life cycle consists of three distinct phases: policy specification, pol-

icy refinement, and policy evaluation. In the policy specification phase resource
administrators specify OWL-based policies representing ontological associations
between actions and contexts ontology definitions. The protection contexts may
have attribute values assigned to constants or may be variables. In the latter case,
attributes are assigned proper values by combining DL-based and LP-based rea-
soning over the context ontology and a set of context aggregation and activation
rules. In particular, the output of LP rules is fed into the DL knowledge base
to determine the value of each attribute given the current context. OWL-based
policies can be viewed as policy types: they define the actions that are allowed
in a set of context types. In the policy specification phase, administrators have
to define aggregation and evaluation rules to enable effective enforcement and
adaptation of OWL policies. In order to be enforced in the real world, policies
need to be instantiated by adapting them to the current state of the world, in
order to obtain the set of applicable policies. Once the set of applicable policies
is determined, the contexts of applicable policies are verified against the cur-
rent state of context elements as measured by sensors to determine the set of
currently active policies.

In [8], Convington et al. extend RBAC model with a new type of role called
environment role. Environment roles capture relevant environmental conditions
that are used for restricting and regulating user privileges. Environment are
active when the conditions that define the roles are satisfied in the current envi-
ronmental state. Accesses to resources are granted to users if users are assigned
to a role who has the permission to access the resources and to an environment
role that is active at the moment of the access request is submitted. Clearly, per-

1 Alloy is a is a fully declarative first-order logic language designed for modeling and
analyzing complex software systems.

missions may change for a single users accessing a resource if the environmental
conditions vary between requests.

Zhang et al. [26] propose Dynamic Role Based Access Control (DRBAC) an-
other access control model that extends RBAC with context information. Con-
text information includes environment of the user such as location, time that the
user access the resource and system information such as CPU usage and net-
work bandwidth. The privileges that users have changes based on such context
information. The possible roles which can be assigned to a user and the permis-
sions that are assigned to a role are modeled as state machines. The transitions
represent the events that trigger the change in the assignment of roles to users
and the assignment of permissions to roles. Transitions trigger because an event
occur which is generated by a Context Agent in response to a change in context
information. Thus, Zhang et al. provide a way to represent the changes that can
occur in their model but they do not propose an approach to analyze the impact
of such changes.

Bertino et al. [5] present GEO-RBAC, an extension of RBAC model to deal
with spatial and location-based information. GEO-RBAC relies on the OGC
spatial model to represent (spatial) objects, user positions, and geographically
bounded roles, making the approach quite standard and flexible. Another impor-
tant characteristic of the model is the ability to deal with either real positions,
obtained from a given mobile terminal or a cellular phone, and logical ones, pos-
sibly represented at different granularities. GEO-RBAC is based on the notions
of features, role schema and spatial role. Features are entities of the real world
that may occupy a position and are characterized by a type. A role schema
defines some common properties of a set of spatially aware organizational func-
tions with a similar meaning. A role schema not only defines a common name
for a set of spatial roles but also constrains the space where roles can be en-
abled, the so called role extent. Moreover it specifies the type of logical locations
and ultimately the granularity of the position that the users playing that role
may occupy. A spatial role is a role schema instance. Users are assigned spatial
roles, that can be activated during a session. Unlike RBAC, roles are enabled
only when the user position is contained in the role extent. Finally, like RBAC,
GEO-RBAC supports the notion of role hierarchy that allows a role to inherit
permissions from its ancestor roles, users from its descendant roles, and roles to
be enabled when descendant roles are.

In [16] Kulkarni and Tripathi present CA-RBAC, a context-aware RBAC
model that extends RBAC in several directions. The model supports personalized
permissions for role members, and context-based constraint specification as part
of - dynamic binding of objects with active space services, user admission to
roles, permission executions by role members, and granting access to a subset of
a services resources based on a role members context information. The model also
supports revocation of a users membership in a role when context conditions fail
to hold. Based on this model, the authors have developed a role-based framework
for programming secure context-aware pervasive computing applications.

Bertino et al. [4] propose Temporal-RBAC (TRBAC), an extension of RBAC

models that supports temporal constraints on the enabling/ disabling of roles.
TRBAC supports periodic role enabling and disabling, and temporal dependen-
cies among such actions. Such dependencies expressed by means of role triggers
(active rules that are automatically executed when the specified actions occur)
can also be used to constrain the set of roles that a particular user can ac-
tivate at a given time instant. The firing of a trigger may cause a role to be
enabled/disabled either immediately, or after an explicitly specified amount of
time. Enabling/disabling actions may be given a priority that may help in solv-
ing conflicts, such as the simultaneous enabling and disabling of a role. They
also propose a polynomial algorithm to verify whether TRBAC specifications
are safe that is they are free from ambiguities.

In another work, Bertino et al. [3] present an access control model in which
periodic temporal intervals are associated with authorizations. Permissions are
often limited in time or may hold only for specific periods of time. An authoriza-
tion is automatically granted in the specified intervals and revoked when such
intervals expire. Deductive temporal rules with periodicity and order constraints
are provided to derive new authorizations based on the presence or absence of
other authorizations in specific periods of time.

5 Resiliency to Change

Another aspect related to the evolution of an access control system is the re-
siliency to absence of users.

In [18], Li and Wang introduce a new type of policies denoted as resiliency

policies in the context of access control systems. Resiliency policies state prop-
erties about enabling access in an access control system rather than restricting
access as access control policies do. Intuitively, a resiliency policy specifies a fault
tolerance requirement with respect to a certain critical task. A resiliency policy
consists of the set of permissions that are needed to carry out the task, the num-
ber of absent users the system should tolerate, and the number of the disjoint
sets of users such that the users in each set together possess the permissions to
perform the task. The authors discusses the Resiliency Checking Problem that
consists in determining whether an access control state satisfies a given resiliency
policy. In the general case such problem and several sub cases are intractable
(NP-hard), but the authors identify two sub cases that are solvable in linear
time.

6 Conclusions

In this survey we have discussed the evolution of access control models and how
it is related to the evolution of software systems. In particular, we have first
identified the causes of the evolution of an access control model. Then, we have
provided an overview of the main proposals about the evolution of access control
models. From the analysis of these proposals, we can conclude that to analyze

access control models evolution there is the need for a policy framework based on
a first-order logic whose semantics can be represented as state machines. State
machines are suitable for representing the events that trigger the evolution of
access control policies. Moreover, most of the proposals deal only with changes
in the authorization models caused by changes in the environment. Policy evo-
lution due to changes at requirements, design and implementation level has not
been investing. Thus, analyzing the dependencies between evolution of access
control models and evolution of requirements, design and implementation is an
interesting future research direction.

References

1. Steve Barker, Marek J. Sergot, and Duminda Wijesekera. Status-based access
control. ACM Trans. Inf. Syst. Secur., 12(1):1–47, 2008.

2. Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying authorization
policies. In ESORICS, pages 203–218, 2007.

3. Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An access
control model supporting periodicity constraints and temporal reasoning. ACM
Trans. Database Syst., 23(3):231–285, 1998.

4. Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal role-
based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233, 2001.

5. Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. Geo-
rbac: a spatially aware rbac. In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 29–37, New York,
NY, USA, 2005. ACM.

6. Matt Bishop. Computer Security. Addison Wesley, 2003.

7. Avik Chaudhuri, Prasad Naldurg, Sriram Rajamani, Ganesan Ramalingam, and
Lakshmisubrahmanyam Velaga. Eon: Modeling and analyzing dynamic access con-
trol systems. In Proceedings of the 15th ACM Conference on Computer and Com-
munications Security (CCS’08), pages 381–390. ACM, 2008.

8. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev, Mustaque
Ahamad, and Gregory D. Abowd. Securing context-aware applications using en-
vironment roles. In SACMAT ’01: Proceedings of the sixth ACM symposium on
Access control models and technologies, pages 10–20, New York, NY, USA, 2001.
ACM.

9. Robert Craven, Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu, and Arosha
Bandara. Expressive policy analysis with enhanced system dynamicity. In ASI-
ACCS ’09: Proceedings of the 4th International Symposium on Information, Com-
puter, and Communications Security, pages 239–250, New York, NY, USA, 2009.
ACM.

10. Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying and
reasoning about dynamic access-control policies. In of Lecture Notes in Computer
Science, pages 632–646. Springer, 2006.

11. M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, 1976.

12. R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma.
Context sensitive access control. In SACMAT ’05: Proceedings of the tenth ACM

symposium on Access control models and technologies, pages 111–119, New York,
NY, USA, 2005. ACM Press.

13. Radha Jagadeesan, Will Marrero, Corin Pitcher, and Vijay A. Saraswat. Timed
constraint programming: a declarative approach to usage control. In PPDP, pages
164–175, 2005.

14. Fisler K., Krishnamurthi S., Meyerovich L. A, and Tschantz M. C. Verification
and change-impact analysis of access control policies. In International Conference
on Software Engineering (ICSE), 15-21 May 2005.

15. M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the specification and evolution
of access control policies. In Symposium on Access Control Models and Technologies
(SACMAT), 3-4 May 2001.

16. Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control
in pervasive computing systems. In SACMAT, pages 113–122, 2008.

17. Meir M. Lehman and Juan F. Ramil. Software evolution: background, theory,
practice. Inf. Process. Lett., 88(1-2):33–44, 2003.

18. Ninghui Li, Qihua Wang, and Mahesh Tripunitara. Resiliency policies in access
control. ACM Trans. Inf. Syst. Secur., 12(4):1–34, 2009.

19. Tim Moses. extensible access control markup language tc v2.0 (xacml), February
2005.

20. Prasad Naldurg and Roy H. Campbell. Dynamic access control: preserving safety
and trust for network defense operations. In SACMAT, pages 231–237, 2003.

21. Pucella R. and Weissman V. Reasoning about dynamic policies. In Foundations
of Software Science and Computation Structures (FOSSACS), 2004.

22. Ravi Sandhu. The typed access matrix model. pages 122–136, 1992.
23. Ravi Sandhu and Srinivas Ganta. On testing for the absence of right in access

control models. pages 109–118, 1993.
24. Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri Georg, and

Behzad Bordbar. Ensuring spatio-temporal access control for real-world applica-
tions. In SACMAT ’09: Proceedings of the 14th ACM symposium on Access control
models and technologies, pages 13–22, New York, NY, USA, 2009. ACM.

25. Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila. A se-
mantic context-aware access control framework for secure collaborations in perva-
sive computing environments. In International Semantic Web Conference, pages
473–486, 2006.

26. Guangsen Zhang and Manish Parashar. Context-aware dynamic access control
for pervasive applications. In Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS’04), 2004.

